1
|
Wang M, Zhang S, He J, Zhang T, Zhu H, Sun R, Yang N. Biochemical classification diagnosis of polycystic ovary syndrome based on serum steroid hormones. J Steroid Biochem Mol Biol 2024; 245:106626. [PMID: 39448042 DOI: 10.1016/j.jsbmb.2024.106626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/31/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a metabolic disorder with clinical heterogeneity. PCOS women with non-hyperandrogenemia (NA) might be misdiagnosed due to a lack of diagnostic markers. This study aims to systematically analyze the differences in steroid hormones between PCOS women with hyperandrogenemia (HA) and NA, and to screen classification diagnosis models for PCOS. The serum samples from 54 HA-PCOS, 79 NA-PCOS and 60 control women (Non-PCOS) aged between 18 and 35 were measured by an integrated steroid hormone-targeted quantification assay using LC-MS/MS. The levels of serum androgens, corticosteroids, progestins and estrogens in the steroid hormone biosynthesis pathway were analyzed in PCOS and Non-PCOS women. Eight machine learning methods including Linear Discriminant Analysis (LDA), K-nearest Neighbors (KNN), Boosted Logistic Regression (LogitBoost), Naive Bayes (NB), C5.0 algorithm (C5), Random Forest (RF), Support Vector Machines (SVM), and Neural Network (NNET) were performed, evaluated and selected for classification diagnosis of PCOS. A 10-fold cross-validation on the training set was performed. The whole metabolic flux from cholesterol to downstream steroid hormones increased significantly in PCOS, especially in HA-POCS women. The RF model was chosen for the classification diagnosis of HA-PCOS, NA-PCOS, and Non-PCOS women due to the maximum average accuracy (0.938, p<0.001), AUC (0.989, p<0.001), and kappa (0.906, p<0.001), and the minimum logLoss (0.200, p<0.001). Five steroid hormones including testosterone, androstenedione, total 2-methoxyestradiol, total 4-methoxyestradiol, and free estrone were selected as the decision trees for the simplified RF model. A total of 37 women were included in the validation set. The diagnostic sensitivity for HA-PCOS, NA-PCOS, and Non-PCOS was 100 %, 93.3 % and 91.7 %, respectively. HA-PCOS, NA-PCOS, and Non-PCOS women showed obvious different steroid hormone profiles. The simplified RF model based on two androgens and three estrogens could be effectively applied to the classification diagnosis of PCOS, further reducing the missed diagnosis rate of NA-PCOS.
Collapse
Affiliation(s)
- Min Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Shuhan Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China; Department of Pharmacy, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu 210000, China
| | - Jun He
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tianqi Zhang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Huaijun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Na Yang
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China.
| |
Collapse
|
2
|
Demicheva E, Dordiuk V, Polanco Espino F, Ushenin K, Aboushanab S, Shevyrin V, Buhler A, Mukhlynina E, Solovyova O, Danilova I, Kovaleva E. Advances in Mass Spectrometry-Based Blood Metabolomics Profiling for Non-Cancer Diseases: A Comprehensive Review. Metabolites 2024; 14:54. [PMID: 38248857 PMCID: PMC10820779 DOI: 10.3390/metabo14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Blood metabolomics profiling using mass spectrometry has emerged as a powerful approach for investigating non-cancer diseases and understanding their underlying metabolic alterations. Blood, as a readily accessible physiological fluid, contains a diverse repertoire of metabolites derived from various physiological systems. Mass spectrometry offers a universal and precise analytical platform for the comprehensive analysis of blood metabolites, encompassing proteins, lipids, peptides, glycans, and immunoglobulins. In this comprehensive review, we present an overview of the research landscape in mass spectrometry-based blood metabolomics profiling. While the field of metabolomics research is primarily focused on cancer, this review specifically highlights studies related to non-cancer diseases, aiming to bring attention to valuable research that often remains overshadowed. Employing natural language processing methods, we processed 507 articles to provide insights into the application of metabolomic studies for specific diseases and physiological systems. The review encompasses a wide range of non-cancer diseases, with emphasis on cardiovascular disease, reproductive disease, diabetes, inflammation, and immunodeficiency states. By analyzing blood samples, researchers gain valuable insights into the metabolic perturbations associated with these diseases, potentially leading to the identification of novel biomarkers and the development of personalized therapeutic approaches. Furthermore, we provide a comprehensive overview of various mass spectrometry approaches utilized in blood metabolomics research, including GC-MS, LC-MS, and others discussing their advantages and limitations. To enhance the scope, we propose including recent review articles supporting the applicability of GC×GC-MS for metabolomics-based studies. This addition will contribute to a more exhaustive understanding of the available analytical techniques. The Integration of mass spectrometry-based blood profiling into clinical practice holds promise for improving disease diagnosis, treatment monitoring, and patient outcomes. By unraveling the complex metabolic alterations associated with non-cancer diseases, researchers and healthcare professionals can pave the way for precision medicine and personalized therapeutic interventions. Continuous advancements in mass spectrometry technology and data analysis methods will further enhance the potential of blood metabolomics profiling in non-cancer diseases, facilitating its translation from the laboratory to routine clinical application.
Collapse
Affiliation(s)
- Ekaterina Demicheva
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Vladislav Dordiuk
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Fernando Polanco Espino
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Konstantin Ushenin
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Autonomous Non-Profit Organization Artificial Intelligence Research Institute (AIRI), Moscow 105064, Russia
| | - Saied Aboushanab
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Vadim Shevyrin
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| | - Aleksey Buhler
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
| | - Elena Mukhlynina
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Olga Solovyova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Irina Danilova
- Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg 620075, Russia; (V.D.); (F.P.E.); (K.U.); (A.B.); (E.M.); (O.S.); (I.D.)
- Institute of Immunology and Physiology of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia
| | - Elena Kovaleva
- Institute of Chemical Engineering, Ural Federal University, Ekaterinburg 620002, Russia; (S.A.); (V.S.); (E.K.)
| |
Collapse
|
3
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|