1
|
Stevenson DK, Winn VD, Shaw GM, England SK, Wong RJ. Solving the Puzzle of Preterm Birth. Clin Perinatol 2024; 51:291-300. [PMID: 38705641 DOI: 10.1016/j.clp.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Solving the puzzle of preterm birth has been challenging and will require novel integrative solutions as preterm birth likely arises from many etiologies. It has been demonstrated that many sociodemographic and psychological determinants of preterm birth relate to its complex biology. It is this understanding that has enabled the development of a novel preventative strategy, which integrates the omics profile (genome, epigenome, transcriptome, proteome, metabolome, microbiome) with sociodemographic, environmental, and psychological determinants of individual pregnant people to solve the puzzle of preterm birth.
Collapse
Affiliation(s)
- David K Stevenson
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Biomedical Innovations Building (BMI), 240 Pasteur Drive, Room 2652, Stanford, CA 94305, USA.
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Division of Reproductive, Stem Cell and Perinatal Biology, Stanford University of School of Medicine, Biomedical Innovations Building (BMI), 240 Pasteur Drive, Module 2700, Stanford, CA 94305, USA
| | - Gary M Shaw
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Biomedical Innovations Building (BMI), 240 Pasteur Drive, Room 2652, Stanford, CA 94305, USA
| | - Sarah K England
- Department of Obstetrics and Gynecology, Center for Reproductive Health Sciences, Washington University School of Medicine, 425 S. Euclid Avenue, CB 8064, St. Louis, MO 63110, USA
| | - Ronald J Wong
- Department of Pediatrics, Division of Neonatal and Developmental Medicine, Stanford University School of Medicine, Biomedical Innovations Building (BMI), 240 Pasteur Drive, Room 2652, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Jiang X, Li L. Decidual macrophage: a reversible role in immunotolerance between mother and fetus during pregnancy. Arch Gynecol Obstet 2024; 309:1735-1744. [PMID: 38329548 DOI: 10.1007/s00404-023-07364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/17/2023] [Indexed: 02/09/2024]
Abstract
The tolerance of the semi-allogeneic fetus by the maternal immune system is an eternal topic of reproductive immunology for ensuring a satisfactory outcome. The maternal-fetal interface serves as a direct portal for communication between the fetus and the mother. It is composed of placental villi trophoblast cells, decidual immune cells, and stromal cells. Decidual immune cells engage in maintaining the homeostasis of the maternal-fetal interface microenvironment. Furthermore, growing evidence has shown that decidual macrophages play a crucial role in maternal-fetal tolerance during pregnancy. As the second largest cell population among decidual immune cells, decidual macrophages are divided into two subtypes: classically activated macrophages (M1) and alternatively activated macrophages (M2). M2 polarization is critical for placentation and embryonic development. Cytokines, exosomes, and metabolites regulate the polarization of decidual macrophages, and thereby modulate maternal-fetal immunotolerance. Explore the initial relationship between decidual macrophages polarization and maternal-fetal immunotolerance will help diagnose and treat the relevant pregnancy diseases, reverse the undesirable outcomes of mothers and infants.
Collapse
Affiliation(s)
- Xiaotong Jiang
- Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Lei Li
- Obstetrics and Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China.
- Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China, No. 324, Jingwu Weiqi Road, Huaiyin District, 250021.
- The Laboratory of Medical Science and Technology Innovation Center (Institute of Translational Medicine), Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, China, No. 6699, Qingdao Road, Huaiyin District, 250117.
| |
Collapse
|
3
|
Ishmail H, Khaliq OP, Ngene NC. The role of genetics in maternal susceptibility to preeclampsia in women of African ancestry. J Reprod Immunol 2023; 160:104139. [PMID: 37683532 DOI: 10.1016/j.jri.2023.104139] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Racial disparities exist in the prevalence of preeclampsia (PE), with women of African ancestry suffering the highest rates of morbidity and mortality. Genetic changes may play a role in the preponderance of PE among women of African ancestry. This review discusses 30 genes with variants that have been studied in PE in women of African ancestry. These studies found that a single gene is not responsible for PE susceptibility as 13 genes have been implicated. These genes subserve endothelial, immune, hemodynamic, homeostatic, thrombophilic, oxidative stress, and lipid metabolic pathways. Notably, maternal-fetal gene interactions also contribute to the susceptibility of the disease. For instance, the maternal KIR AA genotype and paternally inherited fetal HLA-C2 genotype confer risk for developing PE. Additionally, genetic changes such as epigenetic modulation of expression of the MTHFR gene through DNA methylation is also associated with the occurrence of PE. In contrast, some genes such as the KIR B centromeric region protect against development of PE in some women. The soluble fms-like tyrosine kinase 1 (sFlt-1) contributes to the development of PE and is a potential novel therapeutic option for targeted gene silencing of anti-angiogenic sFLT-1 gene. Additionally, NOS3 gene is an important target for pharmacogenomics because it is responsible for the production of endothelial nitric oxide. In conclusion, maternal genetic and epigenetic variants confer susceptibility to PE, indicating the need for further studies to develop a screening tool incorporating maternal genetic variants to identify women at high risk for PE and offer them a preventive therapy.
Collapse
Affiliation(s)
- Habiba Ishmail
- Department of Obstetrics and Gynecology, Leratong Hospital, Krugersdorp, South Africa.
| | - Olive Pearl Khaliq
- Department of Paediatrics, University of Free State, Bloemfontein, South Africa
| | - Nnabuike Chibuoke Ngene
- Department of Obstetrics and Gynecology, Leratong Hospital, Krugersdorp, South Africa; Department of Obstetrics and Gynaecology, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
4
|
Gumilar KE, Priangga B, Lu CH, Dachlan EG, Tan M. Iron metabolism and ferroptosis: A pathway for understanding preeclampsia. Biomed Pharmacother 2023; 167:115565. [PMID: 37751641 DOI: 10.1016/j.biopha.2023.115565] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Preeclampsia (PE) is a serious medical condition that poses a significant health risk to women and children worldwide, particularly in the middle- and low-income countries. It is a complex syndrome that occurs as a result of abnormal pregnancy. Hypertension is the most common symptom of PE, with proteinuria and specific organ systems as detrimental targets. PE's pathogenesis is diverse, and its symptoms can overlap with other diseases. In early pregnancy, when the placenta takes over control, oxidative stress may be closely associated with ferroptosis, a type of cell death caused by intracellular iron accumulation. Ferroptosis in the placenta is defined by redox-active iron availability, loss of antioxidant capacity and phospholipids containing polyunsaturated fatty acids (PUFA) oxidation. Recent studies suggest a compelling potential link between ferroptosis and PE. In this article, we comprehensively review the current understanding of PE and discuss one of its emerging underlying mechanisms, the ferroptosis pathway. We also provide perspective and analysis on the implications of this process in the diagnosis, prevention, and treatment of preeclampsia. We aim to bridge the gap between clinicians and basic scientists in understanding this harmful disease and challenge the research community to put more effort into this exciting new area.
Collapse
Affiliation(s)
- Khanisyah Erza Gumilar
- Graduate Institute of Biomedical Science, China Medical University, Taichung 406040, Taiwan, ROC; Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bayu Priangga
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Chien-Hsing Lu
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung 40705, Taiwan, ROC
| | - Erry Gumilar Dachlan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Ming Tan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 406040, Taiwan, ROC; Institute of Biochemistry & Molecular Biology, and Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan, ROC.
| |
Collapse
|