1
|
Cheng Z, Wang J, Bian Y, Tan M, Chen Y, Wang Y, Li B. Oral polysaccharide-coated liposome-modified double-layered nanoparticles containing anthocyanins: preparation, characterization, biocompatibility and evaluation of lipid-lowering activity in vitro. Food Chem 2024; 439:138166. [PMID: 38091786 DOI: 10.1016/j.foodchem.2023.138166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/04/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Anthocyanins (ACNs) systems encapsulated in nanomaterials have received widespread attention and rapid development due to its good delivery potential. Here, the favorable benefits of four natural polysaccharide food additives coated ACNs-liposome nanoparticles (ACNs-Lipo NPs) on the stability and possible lipid-lowering effects of ACNs are discussed in this work. The polysaccharides were coupled to the ACNs-Lipo NPs and self-assembled to create ACNs-Lipo@polysaccharide NPs. The impact of various polysaccharides on the physical, chemical, and stability characteristics of NPs was examined. We found that the NPs prepared with gum arabic (GA) had the best stability. FT-IR and XRD analysis revealed electrostatic adsorption and hydrogen binding forces between the components, as well as an amorphous structure. A series of tests in vitro confirmed the excellent stability, bioavailability, antioxidant activity, and biocompatibility of NPs. Finally, cellular antioxidant activity (CAA) and oleic acid (OA)-induced lipid deposition cell models revealed that ACNs-Lipo@GA might be more readily absorbed by cells, resulting in improved antioxidant activity and lipid-lowering impact, with possible targeted delivery qualities and lipid-lowering effect.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Jiaxin Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Yuanyuan Bian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
2
|
Cheng Z, Wei W, Chen Y, Xu A, Wang Y, Li B. Construction of nanoparticles from blueberry anthocyanins-lecithin/gum Arabic improves lipid droplet accumulation and gut microbiota disturbance in HFD-induced obese mice. Int J Biol Macromol 2024; 264:130595. [PMID: 38437939 DOI: 10.1016/j.ijbiomac.2024.130595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
The digestive instability of anthocyanins (ACNs) limits their application in food nutrition, especially precision nutrition. Blueberry ACNs-loaded nanoparticles (Lipo/GA-ACNs NPs) were prepared using gum arabic (GA) as the delivery carrier and liposomal vesicles (Lipo) prepared from soy lecithin as the targeting scaffold. The average particle size of the NPs was 99.4 nm, and the polydispersion index (PDI) was 0.46. The results showed that the presence of the Lipo-GA matrix enhanced the NPs' in vitro stability and antioxidant activity. In addition, the in vitro biocompatibility, uptake ability, lipid-lowering activity, and free-radical scavenging ability were improved to a certain extent. In a high-fat diet (HFD)-induced obese mouse model, oral administration of ACNs-LNP (LNP, liver-targeted nanoparticle) showed better effects on body weight, liver injury, and lipid droplet accumulation in the liver than ACNs. In addition, ACNs-LNP also played a role in regulating HFD-induced gut microbiota imbalance. These results provide a promising ACNs delivery strategy with the potential to be developed into a functional food that targets the liver to prevent fatty liver.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Wenwen Wei
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Yi Chen
- Nanchang Univ, State Key Lab Food Sci & Technol, Nanchang, China
| | - Aihua Xu
- Department of Rehabilitation Medicine, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
3
|
Shi Y, Rong S, Guo T, Zhang R, Xu D, Han Y, Liu F, Su J, Xu H, Chen S. Fabrication of compact zein-chondroitin sulfate nanocomplex by anti-solvent co-precipitation: Prevent degradation and regulate release of curcumin. Food Chem 2024; 430:137110. [PMID: 37562259 DOI: 10.1016/j.foodchem.2023.137110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
The main purpose of this study was to prepare zein-chondroitin sulfate (ZC) nanocomplex by anti-solvent co-precipitation, and to encapsulate, protect and controlled-release curcumin. As the proportion of chondroitin sulfate (CS) increased, the particle size, turbidity and zeta-potential of the ZC nanocomplexes all increased. When the mass ratio of zein and CS was 10:3, the ZC nanocomplex had small particle size (129 nm) and low polydispersity index (0.3). According to FTIR, FS, CD and XRD results, zein and CS were tightly bound by electrostatic attraction, hydrophobic effect and hydrogen bonding. The ZC nanocomplex was designed to encapsulate curcumin with high encapsulation efficiency (94.7%) and loading capacity (3.8%), and also enhanced the resistance of curcumin to light and thermal degradation by 2.9 and 2.4 times. It also exhibited controlled release capability during simulated gastrointestinal digestion. These results suggested the ZC nanocomplex is a good delivery vehicle to facilitate the application of curcumin.
Collapse
Affiliation(s)
- Yufan Shi
- School of Public Health, Wuhan University, 430071, China.
| | - Shuang Rong
- School of Public Health, Wuhan University, 430071, China.
| | - Tingxian Guo
- School of Public Health, Wuhan University, 430071, China.
| | - Ruyi Zhang
- School of Public Health, Wuhan University, 430071, China.
| | - Duoxia Xu
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, Beijing 100048, China.
| | - Yahong Han
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest Agriculture & Forestry University, Yangling 712199, China.
| | - Jiaqi Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hongxin Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan University, Wuhan 430060, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, 430071, China.
| |
Collapse
|
4
|
Impact of Cell Disintegration Techniques on Curcumin Recovery. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09319-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
In recent years, the improvement of curcumin recovery from turmeric by cell and tissue disintegration techniques has been gaining more attention; these emerging techniques were used for a reproducible and robust curcumin extraction process. Additionally, understanding the material characteristics is also needed to choose the optimized technique and appropriate processing parameters. In this review, an outlook about the distribution of different fractions in turmeric rhizomes is reviewed to explain matrix challenges on curcumin extraction. Moreover, the most important part, this review provides a comprehensive summary of the latest studies on ultrasound-assisted extraction (UAE), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), high-pressure-assisted extraction (HPAE), pulsed electric field-assisted extraction (PEFAE), and ohmic heating-assisted extraction (OHAE). Lastly, a detailed discussion about the advantages and disadvantages of emerging techniques will provide an all-inclusive understanding of the food industry’s potential of different available processes.
Collapse
|