1
|
Haque M, Chutia J, Mondal A, Quraishi S, Kumari K, Marboh EWM, Aguan K, Singha Roy A. Formation of CdTe core and CdTe@ZnTe core-shell quantum dots via hydrothermal approach using dual capping agents: deciphering the food dye sensing and protein binding applications. Phys Chem Chem Phys 2024; 26:22941-22958. [PMID: 39171443 DOI: 10.1039/d4cp02225d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Excessive use of food coloring agents in the food industry to make the food more attractive or improve the taste has caused various health and ecological problems. Therefore, it is necessary to develop a reliable, sensitive, and selective sensing probe to detect food dyes in different food products for future industrial processing and biosafety. In recent decades, surface-functionalized quantum dots (QDs), owing to their unique optical properties, have gained tremendous interest for a wide range of applications, including biomedical, bioimaging and sensing applications. Herein, we have reported the synthesis of excellent colloidal stable and highly luminescent CdTe core and CdTe@ZnTe core-shell QDs using dual functionalizing agents, polyvinyl pyrrolidone and vitamin C. The synthesized QDs were explored as excellent sensing probes for the food dyes carmoisine, Ponceau 4R and tartrazine with limit of detection (LOD) values of 0.097 ± 0.006, 0.147 ± 0.001 and 0.044 ± 0.001 μM for CdTe-PVP QDs and 0.079 ± 0.001, 0.114 ± 0.002 and 0.042 ± 0.001 μM for CdTe@ZnTe-PVP QDs, respectively. The sensitivity of the synthesized QDs for the food dyes was also investigated in real samples (soft drinks and medications). Moreover, considering the potential effects of QDs as therapeutics or nano-drug carriers, the interactions between the synthesized QDs and carrier protein human serum albumin (HSA) were investigated. The binding affinity was observed to be in the order of 104 M-1. QDs were found to quench the intrinsic fluorescence of HSA, and both types of quenching (static and dynamic) occur via electrostatic interactions in association with hydrophobic forces without any significant alteration in the protein structure.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Jintu Chutia
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Amarjyoti Mondal
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Sana Quraishi
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| | - Kalpana Kumari
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, 781039, India
| | - Erica W M Marboh
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong, 793003, India.
| |
Collapse
|
2
|
Wadhawan G, Kalra A, Gupta A. Potential of halophiles and alkaliphiles in bioremediation of azo dyes-laden textile wastewater: a review. 3 Biotech 2024; 14:194. [PMID: 39131176 PMCID: PMC11306850 DOI: 10.1007/s13205-024-04036-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/22/2024] [Indexed: 08/13/2024] Open
Abstract
Azo dye-laden textile wastewater must be treated before release due to various health and environmental concerns. Bioremediation of textile wastewater, however, is a challenge owing to its alkaline and saline nature as mesophilic microbes, in general, are either not able to thrive or show less efficiency under such hostile environment. Thus, pre-treatment for neutralization or salinity removal becomes a prerequisite before applying microbes for treatment, causing extra economical and technical burden. Extremophilic bacteria can be the promising bioremediating tool because of their inherent ability to survive and show toxicants removal capability under such extreme conditions without need of pre-treatment. Among extremophiles, halophilic and alkaliphilic bacteria which are naturally adapted to high salt and pH are of special interest for the decolorization of saline-alkaline-rich textile wastewater. The current review article is an attempt to provide an overview of the bioremediation of azo dyes and azo dye-laden textile wastewater using these two classes of extremophilic bacteria. The harmful effects of azo dyes on human health and environment have been discussed herein. Halo-alkaliphilic bacteria circumvent the extreme conditions by various adaptations, e.g., production of certain enzymes, adjustment at the protein level, pH homeostasis, and other structural adaptations that have been highlighted in this review. The unique properties of alkaliphiles and halophiles, to not only sustain but also harboring high dye removal competence at high pH and salt concentration, make them a good candidate for designing future bioremediation strategies for the management of alkaline, salt, and azo dye-laden industrial wastewaters.
Collapse
Affiliation(s)
- Gunisha Wadhawan
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anuja Kalra
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| | - Anshu Gupta
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi 110078 India
| |
Collapse
|
3
|
Assaf S, Park J, Chowdhry N, Ganapuram M, Mattathil S, Alakeel R, Kelly OJ. Unraveling the Evolutionary Diet Mismatch and Its Contribution to the Deterioration of Body Composition. Metabolites 2024; 14:379. [PMID: 39057702 PMCID: PMC11279030 DOI: 10.3390/metabo14070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
Over the millennia, patterns of food consumption have changed; however, foods were always whole foods. Ultra-processed foods (UPFs) have been a very recent development and have become the primary food source for many people. The purpose of this review is to propose the hypothesis that, forsaking the evolutionary dietary environment, and its complex milieu of compounds resulting in an extensive metabolome, contributes to chronic disease in modern humans. This evolutionary metabolome may have contributed to the success of early hominins. This hypothesis is based on the following assumptions: (1) whole foods promote health, (2) essential nutrients cannot explain all the benefits of whole foods, (3) UPFs are much lower in phytonutrients and other compounds compared to whole foods, and (4) evolutionary diets contributed to a more diverse metabolome. Evidence will be presented to support this hypothesis. Nutrition is a matter of systems biology, and investigating the evolutionary metabolome, as compared to the metabolome of modern humans, will help elucidate the hidden connections between diet and health. The effect of the diet on the metabolome may also help shape future dietary guidelines, and help define healthy foods.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Owen J. Kelly
- College of Osteopathic Medicine, Sam Houston State University, Conroe, TX 77304, USA; (S.A.); (J.P.); (N.C.); (M.G.); (S.M.); (R.A.)
| |
Collapse
|
4
|
Barciela P, Perez-Vazquez A, Prieto MA. Azo dyes in the food industry: Features, classification, toxicity, alternatives, and regulation. Food Chem Toxicol 2023:113935. [PMID: 37429408 DOI: 10.1016/j.fct.2023.113935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Azo dyes, including Tartrazine, Sunset Yellow, and Carmoisine, are added to foods to provide color, but they have no value with regard to nutrition, food preservation, or health benefits. Because of their availability, affordability, stability, and low cost, and because they provide intense coloration to the product without contributing unwanted flavors, the food industry often prefers to use synthetic azo dyes rather than natural colorants. Food dyes have been tested by regulatory agencies responsible for guaranteeing consumer safety. Nevertheless, the safety of these colorants remains controversial; they have been associated with adverse effects, particularly due to the reduction and cleavage of the azo bond. Here, we review the features, classification, regulation, toxicity, and alternatives to the use of azo dyes in food.
Collapse
Affiliation(s)
- P Barciela
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain
| | - A Perez-Vazquez
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain
| | - M A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain.
| |
Collapse
|
5
|
Zoughi S, Faridbod F, Amiri A, Ganjali MR. Detection of tartrazine in fake saffron containing products by a sensitive optical nanosensor. Food Chem 2021; 350:129197. [PMID: 33618098 DOI: 10.1016/j.foodchem.2021.129197] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/21/2020] [Accepted: 01/21/2021] [Indexed: 01/02/2023]
Abstract
A fluorescent assay for the selective analysis of tartrazine was developed. Tartrazine is a health-threatening food additive commonly used as fake saffron. An optical nanosensor was fabricated based on molecular imprinting technique in which carbon dots (CDs) as fluorophores and tartrazine as a template molecule were embedded in molecularly imprinted polymer (MIP) matrix. The synthesized CDs embedded in MIP (CDs-MIP) was characterized by various methods. The fluorescence intensity of (CDs-MIP) was selectively quenched in the presence of tartrazine in comparison with other similar food color additives. The correlation between the quenching of CD-MIP and the concentration of tartrazine was used as an optical sensing for rapid detection of tartrazine in the range of 3.3-20.0 nM (1.8-10.7 μg L-1) with detection limit of 1.3 nM (0.70 μg L-1). Eventually, the designed nanosensor was successfully applied for tartrazine detection in foodstuffs such as fake saffron, saffron tea and saffron ice cream samples.
Collapse
Affiliation(s)
- Sheida Zoughi
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Amir Amiri
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Analytical Chemistry Department, Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|