1
|
Markouli M, Papachristou A, Politis A, Boviatsis E, Piperi C. Emerging Role of the Slit/Roundabout (Robo) Signaling Pathway in Glioma Pathogenesis and Potential Therapeutic Options. Biomolecules 2024; 14:1231. [PMID: 39456164 PMCID: PMC11506736 DOI: 10.3390/biom14101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/20/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Gliomas represent the most common primary Central Nervous System (CNS) tumors, characterized by increased heterogeneity, dysregulated intracellular signaling, extremely invasive properties, and a dismal prognosis. They are generally resistant to existing therapies and only a few molecular targeting options are currently available. In search of signal transduction pathways with a potential impact in glioma growth and immunotherapy, the Slit guidance ligands (Slits) and their Roundabout (Robo) family of receptors have been revealed as key regulators of tumor cells and their microenvironment. Recent evidence indicates the implication of the Slit/Robo signaling pathway in inflammation, cell migration, angiogenesis, and immune cell infiltration of gliomas, suppressing or promoting the expression of pivotal proteins, such as cell adhesion molecules, matrix metalloproteinases, interleukins, angiogenic growth factors, and immune checkpoints. Herein, we discuss recent data on the significant implication of the Slit/Robo signaling pathway in glioma pathology along with the respective targeting options, including immunotherapy, monoclonal antibody therapy, and protein expression modifiers.
Collapse
Affiliation(s)
- Mariam Markouli
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA
| | - Athina Papachristou
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
| | - Anastasios Politis
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
- Second Department of Neurosurgery, “Attikon” University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Efstathios Boviatsis
- Second Department of Neurosurgery, “Attikon” University Hospital, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece (A.P.); (A.P.)
| |
Collapse
|
2
|
Liu T, Zhai C, Tian B, Li C, Han S, Wang S, Xuan M, Liu D, Zhao Y, Zhao H, Yu W, Wang J. Downregulation of Roundabout guidance receptor 2 suppresses hepatocellular carcinoma progression by interacting with Y-box binding protein 1. Sci Rep 2024; 14:2588. [PMID: 38297025 PMCID: PMC10830551 DOI: 10.1038/s41598-024-53013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 01/25/2024] [Indexed: 02/02/2024] Open
Abstract
Roundabout guidance receptor 2 (Robo2) is closely related to malignant tumors such as pancreatic cancer and liver fibrosis, but there is no relevant research on the role of Robo2 in HCC. The study will further explore the function and mechanism of Robo2 and its downstream target genes in HCC. Firstly, Robo2 protein levels in human HCC tissues and paired adjacent normal liver tissues were detected. Then we established HepG2 and Huh7 hepatoma cell lines with knock-down Robo2 by transfection with lentiviral vectors, and examined the occurrence of EMT, proliferation and apoptosis abilities in HCC cells by western blot, flow cytometry, wound healing assay and TUNEL staining. Then we verified the interaction between Robo2 and its target gene by Co-IP and immunofluorescence co-staining, and further explored the mechanism of Robo2 and YB-1 by rescue study. The protein expression level of Robo2 in HCC was considerably higher than that in the normal liver tissues. After successfully constructing hepatoma cells with knock-down Robo2, it was confirmed that down-regulated Robo2 suppressed EMT and proliferation of hepatoma cells, and accelerated the cell apoptosis. High-throughput sequencing and validation experiments verified that YB-1 was the downstream target gene of Robo2, and over-expression of YB-1 could reverse the apoptosis induced by Robo2 down-regulation and its inhibitory effect on EMT and proliferation. Robo2 deficiency inhibits EMT and proliferation of hepatoma cells and augments the cell apoptosis by regulating YB-1, thus inhibits the occurrence of HCC and provides a new strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Congjie Zhai
- Hebei Key Laboratory of Colorectal Cancer Precision Diagnosis and Treatment, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Bo Tian
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Chao Li
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Shuangshuang Han
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Shihui Wang
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Mingda Xuan
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Dehua Liu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Yunxia Zhao
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Hongyan Zhao
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China
| | - Weifang Yu
- Department of Endoscopy Center, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| | - Jia Wang
- Department of Infectious Diseases, The First Hospital of Hebei Medical University, No. 89 Donggang Road, Shijiazhuang, 050031, Hebei, China.
| |
Collapse
|
3
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
4
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
5
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
6
|
Wang X, Zhang Z, Wu SC. Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11644-11664. [PMID: 33045827 DOI: 10.1021/acs.jafc.0c04791] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Silybum marianum (SM), a well-known plant used as both a medicine and a food, has been widely used to treat various diseases, especially hepatic diseases. The seeds and fruits of SM contain a flavonolignan complex called silymarin, the active compounds of which include silybin, isosilybin, silychristin, dihydrosilybin, silydianin, and so on. In this review, we thoroughly summarize high-quality publications related to the pharmacological effects and underlying mechanisms of SM. SM has antimicrobial, anticancer, hepatoprotective, cardiovascular-protective, neuroprotective, skin-protective, antidiabetic, and other effects. Importantly, SM also counteracts the toxicities of antibiotics, metals, and pesticides. The diverse pharmacological activities of SM provide scientific evidence supporting its use in both humans and animals. Multiple signaling pathways associated with oxidative stress and inflammation are the common molecular targets of SM. Moreover, the flavonolignans of SM are potential agonists of PPARγ and ABCA1, PTP1B inhibitors, and metal chelators. At the end of the review, the potential and perspectives of SM are discussed, and these insights are expected to facilitate the application of SM and the discovery and development of new drugs. We conclude that SM is an interesting dietary medicine for health enhancement and drug discovery and warrants further investigation.
Collapse
Affiliation(s)
- Xin Wang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Zhen Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
| | - Shuai-Cheng Wu
- College of Veterinary Medicine, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, Shandong 266109, People's Republic of China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, People's Republic of China
| |
Collapse
|
7
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
8
|
Jee SC, Kim M, Sung JS. Modulatory Effects of Silymarin on Benzo[a]pyrene-Induced Hepatotoxicity. Int J Mol Sci 2020; 21:ijms21072369. [PMID: 32235460 PMCID: PMC7177818 DOI: 10.3390/ijms21072369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/26/2020] [Accepted: 03/28/2020] [Indexed: 12/14/2022] Open
Abstract
Benzo[a]pyrene (B[a]P), a polycyclic aromatic hydrocarbon, is a group 1 carcinogen that introduces mutagenic DNA adducts into the genome. In this study, we investigated the molecular mechanisms underlying the involvement of silymarin in the reduction of DNA adduct formation by B[a]P-7,8-dihydrodiol-9,10-epoxide (BPDE), induced by B[a]P. B[a]P exhibited toxicity in HepG2 cells, whereas co-treatment of the cells with B[a]P and silymarin reduced the formation of BPDE-DNA adducts, thereby increasing cell viability. Determination of the level of major B[a]P metabolites in the treated cells showed that BPDE levels were reduced by silymarin. Nuclear factor erythroid 2-related factor 2 (Nrf2) and pregnane X receptor (PXR) were found to be involved in the activation of detoxifying genes against B[a]P-mediated toxicity. Silymarin did not increase the expression of these major transcription factors, but greatly facilitated their nuclear translocation. In this manner, treatment of HepG2 cells with silymarin modulated detoxification enzymes through NRF2 and PXR to eliminate B[a]P metabolites. Knockdown of Nrf2 abolished the preventive effect of silymarin on BPDE-DNA adduct formation, indicating that activation of the Nrf2 pathway plays a key role in preventing B[a]P-induced genotoxicity. Our results suggest that silymarin has anti-genotoxic effects, as it prevents BPDE-DNA adduct formation by modulating the Nrf2 and PXR signaling pathways.
Collapse
Affiliation(s)
| | | | - Jung-Suk Sung
- Correspondence: ; Tel.: +82-31-961-5132; Fax: +82-31-961-5108
| |
Collapse
|