1
|
Qi L, Hong S, Zhao T, Yan J, Ge W, Wang J, Fang X, Jiang W, Shen SG, Zhang L. DNA Tetrahedron Delivering miR-21-5p Promotes Senescent Bone Defects Repair through Synergistic Regulation of Osteogenesis and Angiogenesis. Adv Healthc Mater 2024; 13:e2401275. [PMID: 38979868 DOI: 10.1002/adhm.202401275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/08/2024] [Indexed: 07/10/2024]
Abstract
Compromised osteogenesis and angiogenesis is the character of stem cell senescence, which brought difficulties for bone defects repairing in senescent microenvironment. As the most abundant bone-related miRNA, miRNA-21-5p plays a crucial role in inducing osteogenic and angiogenic differentiation. However, highly efficient miR-21-5p delivery still confronts challenges including poor cellular uptake and easy degradation. Herein, TDN-miR-21-5p nanocomplex is constructed based on DNA tetrahedral (TDN) and has great potential in promoting osteogenesis and alleviating senescence of senescent bone marrow stem cells (O-BMSCs), simultaneously enhancing angiogenic capacity of senescent endothelial progenitor cells (O-EPCs). Of note, the activation of AKT and Erk signaling pathway may direct regulatory mechanism of TDN-miR-21-5p mediated osteogenesis and senescence of O-BMSCs. Also, TDN-miR-21-5p can indirectly mediate osteogenesis and senescence of O-BMSCs through pro-angiogenic growth factors secreted from O-EPCs. In addition, gelatin methacryloyl (GelMA) hydrogels are mixed with TDN and TDN-miR-21-5p to fabricate delivery scaffolds. TDN-miR-21-5p@GelMA scaffold exhibits greater bone repair with increased expression of osteogenic- and angiogenic-related markers in senescent critical-size cranial defects in vivo. Collectively, TDN-miR-21-5p can alleviate senescence and induce osteogenesis and angiogenesis in senescent microenvironment, which provides a novel candidate strategy for senescent bone repair and widen clinical application of TDNs-based gene therapy.
Collapse
Affiliation(s)
- Lei Qi
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Shebin Hong
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Tong Zhao
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Jinge Yan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Weiwen Ge
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Jing Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Xin Fang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Weidong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Steve Gf Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| | - Lei Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, P. R. China
| |
Collapse
|
2
|
Ritter A, Han J, Bianconi S, Henrich D, Marzi I, Leppik L, Weber B. The Ambivalent Role of miRNA-21 in Trauma and Acute Organ Injury. Int J Mol Sci 2024; 25:11282. [PMID: 39457065 PMCID: PMC11508407 DOI: 10.3390/ijms252011282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Since their initial recognition, miRNAs have been the subject of rising scientific interest. Especially in recent years, miRNAs have been recognized to play an important role in the mediation of various diseases, and further, their potential as biomarkers was recognized. Rising attention has also been given to miRNA-21, which has proven to play an ambivalent role as a biomarker. Responding to the demand for biomarkers in the trauma field, the present review summarizes the contrary roles of miRNA-21 in acute organ damage after trauma with a specific focus on the role of miRNA-21 in traumatic brain injury, spinal cord injury, cardiac damage, lung injury, and bone injury. This review is based on a PubMed literature search including the terms "miRNA-21" and "trauma", "miRNA-21" and "severe injury", and "miRNA-21" and "acute lung respiratory distress syndrome". The present summary makes it clear that miRNA-21 has both beneficial and detrimental effects in various acute organ injuries, which precludes its utility as a biomarker but makes it intriguing for mechanistic investigations in the trauma field.
Collapse
Affiliation(s)
- Aileen Ritter
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital Frankfurt, Goethe University, 60486 Frankfurt am Main, Germany; (J.H.); (S.B.); (D.H.); (I.M.); (L.L.); (B.W.)
| | | | | | | | | | | | | |
Collapse
|
3
|
Huber J, Longaker MT, Quarto N. Circulating and extracellular vesicle-derived microRNAs as biomarkers in bone-related diseases. Front Endocrinol (Lausanne) 2023; 14:1168898. [PMID: 37293498 PMCID: PMC10244776 DOI: 10.3389/fendo.2023.1168898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/31/2023] [Indexed: 06/10/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNA molecules that regulate posttranscriptional gene expression by repressing messengerRNA-targets. MiRNAs are abundant in many cell types and are secreted into extracellular fluids, protected from degradation by packaging in extracellular vesicles. These circulating miRNAs are easily accessible, disease-specific and sensitive to small changes, which makes them ideal biomarkers for diagnostic, prognostic, predictive or monitoring purposes. Specific miRNA signatures can be reflective of disease status and development or indicators of poor treatment response. This is especially important in malignant diseases, as the ease of accessibility of circulating miRNAs circumvents the need for invasive tissue biopsy. In osteogenesis, miRNAs can act either osteo-enhancing or osteo-repressing by targeting key transcription factors and signaling pathways. This review highlights the role of circulating and extracellular vesicle-derived miRNAs as biomarkers in bone-related diseases, with a specific focus on osteoporosis and osteosarcoma. To this end, a comprehensive literature search has been performed. The first part of the review discusses the history and biology of miRNAs, followed by a description of different types of biomarkers and an update of the current knowledge of miRNAs as biomarkers in bone related diseases. Finally, limitations of miRNAs biomarker research and future perspectives will be presented.
Collapse
Affiliation(s)
- Julika Huber
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Plastic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|