1
|
Gatti SD, Gaddi D, Turati M, Leone G, Arts JJ, Pessina F, Carminati M, Zatti G, De Rosa L, Bigoni M. Clinical outcomes and complications of S53P4 bioactive glass in chronic osteomyelitis and septic non-unions: a retrospective single-center study. Eur J Clin Microbiol Infect Dis 2024; 43:489-499. [PMID: 38195783 DOI: 10.1007/s10096-023-04737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 12/11/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Dead space management following debridement surgery in chronic osteomyelitis or septic non-unions is one of the most crucial and discussed steps for the success of the surgical treatment of these conditions. In this retrospective clinical study, we described the efficacy and safety profile of surgical debridement and local application of S53P4 bioactive glass (S53P4 BAG) in the treatment of bone infections. METHODS A consecutive single-center series of 38 patients with chronic osteomyelitis (24) and septic non-unions (14), treated with bioactive glass S53P4 as dead space management following surgical debridement between May 2015 and November 2020, were identified and evaluated retrospectively. RESULTS Infection eradication was reached in 22 out of 24 patients (91.7%) with chronic osteomyelitis. Eleven out of 14 patients (78.6%) with septic non-union achieved both fracture healing and infection healing in 9.1 ± 4.9 months. Three patients (7.9%) developed prolonged serous discharge with wound dehiscence but healed within 2 months with no further surgical intervention. Average patient follow-up time was 19.8 months ± 7.6 months. CONCLUSION S53P4 bioactive glass is an effective and safe therapeutic option in the treatment of chronic osteomyelitis and septic non-unions because of its unique antibacterial properties, but also for its ability to generate a growth response in the remaining healthy bone at the bone-glass interface.
Collapse
Affiliation(s)
| | - Diego Gaddi
- Department of Orthopedic Surgery, Policlinico San Pietro, Ponte San Pietro, Italy
| | - Marco Turati
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy.
- Orthopedic Department, IRCCS San Gerardo dei Tintori, Via Pergolesi, 33, 20900, Monza, Italy.
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza (Italy), Grenoble, France.
- Department of Paediatric Orthopedic Surgery, Hospital Couple Enfants, Grenoble Alpes University, Grenoble, France.
| | - Giulio Leone
- Orthopedic Department, IRCCS San Gerardo dei Tintori, Via Pergolesi, 33, 20900, Monza, Italy
| | - Jacobus J Arts
- Department Orthopaedic Biomechanics, Faculty Biomedical Engineering, Eindhoven University of Technology TU/e, Eindhoven, Netherlands
- Department Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Fabio Pessina
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
| | - Mattia Carminati
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
| | - Giovanni Zatti
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
- Orthopedic Department, IRCCS San Gerardo dei Tintori, Via Pergolesi, 33, 20900, Monza, Italy
| | - Laura De Rosa
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
- Orthopedic Department, IRCCS San Gerardo dei Tintori, Via Pergolesi, 33, 20900, Monza, Italy
| | - Marco Bigoni
- School of Medicine and Surgery, University of Milano, Bicocca, Monza, Italy
- Department of Orthopedic Surgery, Policlinico San Pietro, Ponte San Pietro, Italy
- Transalpine Center of Pediatric Sports Medicine and Surgery, University of Milano-Bicocca - Hospital Couple Enfant, Monza (Italy), Grenoble, France
| |
Collapse
|
2
|
Findeisen S, Gräfe N, Schwilk M, Ferbert T, Helbig L, Haubruck P, Schmidmaier G, Tanner M. Use of Autologous Bone Graft with Bioactive Glass as a Bone Substitute in the Treatment of Large-Sized Bone Defects of the Femur and Tibia. J Pers Med 2023; 13:1644. [PMID: 38138871 PMCID: PMC10744955 DOI: 10.3390/jpm13121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Managing bone defects in non-union surgery remains challenging, especially in cases of large defects exceeding 5 cm in size. Historically, amputation and compound osteosynthesis with a remaining PMMA spacer have been viable and commonly used options. The risk of non-union after fractures varies between 2% and 30% and is dependent on various factors. Autologous bone grafts from the iliac crest are still considered the gold standard but are limited in availability, prompting consideration of artificial grafts. OBJECTIVES The aims and objectives of the study are as follows: 1. To evaluate the radiological outcome of e.g., the consolidation and thus the stability of the bone (three out of four consolidated cortices/Lane-Sandhu-score of at least 3) by using S53P4-type bioactive glass (BaG) as a substitute material for large-sized bone defects in combination with autologous bone using the RIA technique. 2. To determine noticeable data-points as a base for future studies. METHODS In our clinic, 13 patients received bioactive glass (BaG) as a substitute in non-union therapy to promote osteoconductive aspects. BaG is a synthetic material composed of sodium, silicate, calcium, and phosphate. The primary endpoint of our study was to evaluate the radiological consolidation of bone after one and two years. To assess bone stabilization, we used a modified Lane-Sandhu score, considering only radiological criteria. A bone was considered stabilized if it achieved a minimum score of 3. For full consolidation (all four cortices consolidated), a minimum score of 4 was required. Each bone defect exceeded 5 cm in length, with an average size of 6.69 ± 1.92 cm. RESULTS The mean follow-up period for patients without final bone consolidation was 34.25 months, with a standard deviation of 14.57 months, a median of 32.00 months and a range of 33 months. In contrast, patients with a fully consolidated non-union had an average follow-up of 20.11 ± 15.69 months and a range of 45 months. Overall, the mean time from non-union surgery to consolidation for patients who achieved final union was 14.91 ± 6.70 months. After one year, six patients (46.2%) achieved complete bone consolidation according to the Lane-Sandhu score. Three patients (23.1%) displayed evident callus formation with expected stability, while three patients (23.1%) did not develop any callus, and one patient only formed a minimal callus with no expected stability. After two years, 9 out of 13 patients (69.2%) had a score of 4. The remaining four patients (30.8%) without expected stability either did not heal within two years or required a revision during that time. CONCLUSIONS Bioactive glass (BaG) in combination with autologous bone (RIA) appears to be a suitable filler material for treating extensive non-unions of the femur and tibia. This approach seems to show non-inferiority to treatment with Tricalcium Phosphate (TCP). To ensure the success of this treatment, it is crucial to validate the procedure through a randomized controlled trial (RCT) with a control group using TCP, which would provide higher statistical power and more reliable results.
Collapse
Affiliation(s)
- Sebastian Findeisen
- Clinic for Trauma and Reconstructive Surgery, Center for Orthopedics, Trauma Surgery and Paraplegiology, Schlierbacher Landstraße 200a, University Hospital Heidelberg, 69118 Heidelberg, Germany; (N.G.); (M.S.); (T.F.); (L.H.); (P.H.); (G.S.); (M.T.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Solomin LN, Semenistyy AA, Komarov AV, Khominets VV, Sheridan GA, Rozbruch SR. Universal Long Bone Nonunion Classification. Strategies Trauma Limb Reconstr 2023; 18:169-173. [PMID: 38404564 PMCID: PMC10891356 DOI: 10.5005/jp-journals-10080-1597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/06/2023] [Indexed: 02/27/2024] Open
Abstract
Aim and background The management of bone union disorders is a complex problem in orthopaedics, requiring a reliable and comprehensive classification system for accurate diagnosis and treatment. Despite advances in understanding pathophysiology, diagnosis, and treatment in this area, there is no generally accepted classification system. The aim of our work was to create a comprehensive classification, which will systemize the vast majority of bone union disorders, underline their differences and form the basis for their treatment. Methods The key criteria for nonunion evaluation and treatment were identified based on the conducted literature review: Time from the initial event (delayed union or nonunion), location, type of pathology (A, Hypertrophic; B, Normotrophic; C, Oligotrophic) and the presence of hardware. Based on these criteria the ULBNC has been developed. Atrophic nonunions were excluded from this classification as they are considered segmental bone defects with special classification. Results The ULBNC is based on the same principles of coding as the "gold standard" AO/OTA Fractures Classification system with alpha-numeric coding "from simple to complex." The choice of treatment method depends on the type, group, and subgroup of the nonunion as described. Conclusion Universal Long Bone Nonunion Classification (ULBNC) is an alphanumeric system that describes the localization, type of pathology and morphologic characteristics of a nonunion. The use of ULBNC in practice and research will optimize and standardize the treatment of various types of bone healing disorders and eventually improve clinical outcomes. How to cite this article Solomin LN, Semenistyy AA, Komarov AV, et al. Universal Long Bone Nonunion Classification. Strategies Trauma Limb Reconstr 2023;18(3):169-173.
Collapse
Affiliation(s)
- Leonid N Solomin
- Department of Orthopedic Surgery, Vreden National Research Orthopedic Centre, Saint Petersburg, Russian Federation
| | - Anton A Semenistyy
- Department of Orthopedics and Traumatology, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
| | - Artem V Komarov
- Department of Military Traumatology and Orthopedics, S. M. Kirov Military Medical Academy, Saint Petersburg, Russian Federation
| | - Vladimir V Khominets
- Department of Military Traumatology and Orthopedics, S. M. Kirov Military Medical Academy, Saint Petersburg, Russian Federation
| | - Gerard A Sheridan
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, United States
| | - S Robert Rozbruch
- Department of Orthopedic Surgery, Hospital for Special Surgery, New York, United States
| |
Collapse
|
4
|
Degenhart C, Engelhardt L, Niemeyer F, Erne F, Braun B, Gebhard F, Schütze K. Computer-Based Mechanobiological Fracture Healing Model Predicts Non-Union of Surgically Treated Diaphyseal Femur Fractures. J Clin Med 2023; 12:jcm12103461. [PMID: 37240567 DOI: 10.3390/jcm12103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
As non-unions are still common, a predictive assessment of healing complications could enable immediate intervention before negative impacts for the patient occur. The aim of this pilot study was to predict consolidation with the help of a numerical simulation model. A total of 32 simulations of patients with closed diaphyseal femoral shaft fractures treated by intramedullary nailing (PFNA long, FRN, LFN, and DePuy Synthes) were performed by creating 3D volume models based on biplanar postoperative radiographs. An established fracture healing model, which describes the changes in tissue distribution at the fracture site, was used to predict the individual healing process based on the surgical treatment performed and full weight bearing. The assumed consolidation as well as the bridging dates were retrospectively correlated with the clinical and radiological healing processes. The simulation correctly predicted 23 uncomplicated healing fractures. Three patients showed healing potential according to the simulation, but clinically turned out to be non-unions. Four out of six non-unions were correctly detected as non-unions by the simulation, and two simulations were wrongfully diagnosed as non-unions. Further adjustments of the simulation algorithm for human fracture healing and a larger cohort are necessary. However, these first results show a promising approach towards an individualized prognosis of fracture healing based on biomechanical factors.
Collapse
Affiliation(s)
- Christina Degenhart
- Department of Trauma-, Hand-, and Reconstructive Surgery, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Lucas Engelhardt
- OSORA-Medical Fracture Analytics, Helmholtzstr. 20, 89081 Ulm, Germany
| | - Frank Niemeyer
- OSORA-Medical Fracture Analytics, Helmholtzstr. 20, 89081 Ulm, Germany
| | - Felix Erne
- Department of Trauma and Reconstructive Surgery, Eberhard-Karls-University Tuebingen, BG Unfallklinik, 72076 Tuebingen, Germany
| | - Benedikt Braun
- Department of Trauma and Reconstructive Surgery, Eberhard-Karls-University Tuebingen, BG Unfallklinik, 72076 Tuebingen, Germany
| | - Florian Gebhard
- Department of Trauma-, Hand-, and Reconstructive Surgery, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| | - Konrad Schütze
- Department of Trauma-, Hand-, and Reconstructive Surgery, Ulm University, Albert-Einstein-Allee 23, 89081 Ulm, Germany
| |
Collapse
|