1
|
Hao X, Tang Y, Zhang R, Wang Z, Gao M, Wei R, Zhao Y, Mu X, Lu Y, Zhou X. Cationized orthogonal triad as a photosensitizer with enhanced synergistic antimicrobial activity. Acta Biomater 2024; 178:287-295. [PMID: 38395101 DOI: 10.1016/j.actbio.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Single-molecule-based synergistic phototherapy holds great potential for antimicrobial treatment. Herein, we report an orthogonal molecular cationization strategy to improve the reactive oxygen species (ROS) and hyperthermia generation of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Cationic pyridine (Py) is introduced at the meso‑position of the asymmetric Cy7 with intramolecular charge transfer (ICT) to construct an atypical electron-transfer triad, which reduces ΔES1-S0, circumvents rapid charge recombination, and simultaneously enhances intersystem crossing (ISC) based on spin-orbit charge-transfer ISC (SOCT-ISC) mechanism. This unique molecular construction produces anti-Stokes luminescence (ASL) because the rotatable CN bond enriched in high vibrational-rotational energy levels improves hot-band absorption (HBA) efficiency. The obtained triad exhibits higher singlet oxygen quantum yield and photothermal conversion efficiency compared to indocyanine green (ICG) under irradiation above 800 nm. Cationization with Py enables the triad to target bacteria via intense electrostatic attractions, as well as biocidal property against a broad spectrum of bacteria in the dark. Moreover, the triad under irradiation can enhance biofilm eradication performance in vitro and statistically improve healing efficacy of MRSA-infected wound in mice. Thus, this work provides a simple but effective strategy to design small-molecule photosensitizers for synergistic phototherapy of bacterial infections. STATEMENT OF SIGNIFICANCE: We developed an orthogonal molecular cationization strategy to enhance the reactive oxygen species and thermal effects of heptamethine cyanine (Cy7) for photodynamic and photothermal treatments of bacterial infections. Specifically, cationic pyridine (Py) was introduced at the meso‑position of the asymmetric Cy7 to construct an atypical electron-transfer triad, which reduced ΔES1-S0, circumvented rapid charge recombination, and simultaneously enhanced intersystem crossing (ISC). This triad, with a rotatable CN bond, produced anti-Stokes luminescence due to hot-band absorption. The triad enhanced antimicrobial performance and statistically improved the healing efficacy of MRSA-infected wounds in mice. This site-specific cationization strategy may provide insights into the design of small molecule-based photosensitizers for synergistic phototherapy of bacterial infections.
Collapse
Affiliation(s)
- Xiaoying Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ying Tang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, PR China
| | - Zigeng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Min Gao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ran Wei
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yongxian Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xueluer Mu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yingxi Lu
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China; College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Xiao X, Mu T, Sukhanov AA, Zhou Y, Yu P, Yu F, Elmali A, Zhao J, Karatay A, Voronkova VK. The effect of thionation of the carbonyl group on the photophysics of compact spiro rhodamine-naphthalimide electron donor-acceptor dyads: intersystem crossing, charge separation, and electron spin dynamics. Phys Chem Chem Phys 2023; 25:31667-31682. [PMID: 37966808 DOI: 10.1039/d3cp04891h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Herein, a spiro rhodamine (Rho)-thionated naphthalimide (NIS) electron donor-acceptor orthogonal dyad (Rho-NIS) was prepared to study the formation of a long-lived charge separation (CS) state via the electron spin control approach. The transient absorption (TA) spectra of Rho-NIS indicated that the intersystem crossing (ISC) occurs within 7-42 ps to produce the 3NIS state via the spin orbit coupling ISC (SOC-ISC). The energy order of 3CS (2.01 eV in n-hexane, HEX) and 3LE states (1.68 eV in HEX) depended on the solvent polarity. The 3NIS state having n-π* character and a lifetime of 0.38 μs was observed for Rho-NIS in toluene (TOL). Alternatively, in acetonitrile (ACN), the long-lived 3CS state (0.21 μs) with a high CS state quantum yield (ΦCS, 97%) was produced with the 3NIS state as the precursor and the CS took 134 ps. On the contrary, in the case of the reference Rho-naphthalimide (NI) Rho-NI dyad without thionation of its carbonyl group, a long-lived CS state (0.94 μs) with a high energy level (ECS = 2.12 eV) was generated even in HEX with a lower ΦCS (49%). In the presence of an acid, the Rho unit in the Rho-NIS adopted an open form (Rho-o) and the 3NIS state was produced within 24-47 ps with the 1Rho-o state as the precursor. Subsequently, slow intramolecular triplet-triplet energy transfer (TTET, 0.11-0.60 μs) produced the 3Rho-o state (9.4-13.6 μs). According to the time-resolved electron paramagnetic resonance (TREPR) spectra of NIS-NH2, the zero-field splitting (ZFS) parameter |D| and E of the triplet state were determined to be 6165 MHz and -1233 MHz, respectively, indicating that its triplet state has significant nπ* character, which was supported by its short triplet state lifetime (6.1 μs).
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian 116024, P. R. China.
| | - Tong Mu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian 116024, P. R. China.
| | - Andrey A Sukhanov
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia.
| | - Yihang Zhou
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian 116024, P. R. China.
| | - Peiran Yu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian 116024, P. R. China.
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, P. R. China
| | - Ayhan Elmali
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey.
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Rd., Dalian 116024, P. R. China.
| | - Ahmet Karatay
- Department of Engineering Physics, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey.
| | - Violeta K Voronkova
- Zavoisky Physical-Technical Institute FRC Kazan Scientific Center of RAS, Sibirsky Tract 10/7, Kazan 420029, Russia.
| |
Collapse
|
3
|
Cao L, Liu X, Zhang X, Zhao J, Yu F, Wan Y. The effect of dark states on the intersystem crossing and thermally activated delayed fluorescence of naphthalimide-phenothiazine dyads. Beilstein J Org Chem 2023; 19:1028-1046. [PMID: 37497052 PMCID: PMC10366440 DOI: 10.3762/bjoc.19.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023] Open
Abstract
A series of 1,8-naphthalimide (NI)-phenothiazine (PTZ) electron donor-acceptor dyads were prepared to study the thermally activated delayed fluorescence (TADF) properties of the dyads, from a point of view of detection of the various transient species. The photophysical properties of the dyads were tuned by changing the electron-donating and the electron-withdrawing capability of the PTZ and NI moieties, respectively, by oxidation of the PTZ unit, or by using different aryl substituents attached to the NI unit. This tuning effect was manifested in the UV-vis absorption and fluorescence emission spectra, e.g., in the change of the charge transfer absorption bands. TADF was observed for the dyads containing the native PTZ unit, and the prompt and delayed fluorescence lifetimes changed with different aryl substituents on the imide part. In polar solvents, no TADF was observed. For the dyads with the PTZ unit oxidized, no TADF was observed as well. Femtosecond transient absorption spectra showed that the charge separation takes ca. 0.6 ps, and admixtures of locally excited (3LE) state and charge separated (1CS/3CS) states formed (in n-hexane). The subsequent charge recombination from the 1CS state takes ca. 7.92 ns. Upon oxidation of the PTZ unit, the beginning of charge separation is at 178 fs and formation of 3LE state takes 4.53 ns. Nanosecond transient absorption (ns-TA) spectra showed that both 3CS and 3LE states were observed for the dyads showing TADF, whereas only 3LE or 3CS states were observed for the systems lacking TADF. This is a rare but unambiguous experimental evidence that the spin-vibronic coupling of 3CS/3LE states is crucial for TADF. Without the mediating effect of the 3LE state, no TADF is resulted, even if the long-lived 3CS state is populated (lifetime τCS ≈ 140 ns). This experimental result confirms the 3CS → 1CS reverse intersystem crossing (rISC) is slow, without coupling with an approximate 3LE state. These studies are useful for an in-depth understanding of the photophysical mechanisms of the TADF emitters, as well as for molecular structure design of new electron donor-acceptor TADF emitters.
Collapse
Affiliation(s)
- Liyuan Cao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Xi Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, 2 Ling Gong Road, Dalian, 116024, P. R. China
| | - Fabiao Yu
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 571199, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|