1
|
Wrigley L, Hwang D, Pios SV, Schlenker CW. Optically Gated Dissociation of a Heptazinyl Radical Liberates H • through a Reactive πσ* State. ACS PHYSICAL CHEMISTRY AU 2024; 4:598-604. [PMID: 39634635 PMCID: PMC11613297 DOI: 10.1021/acsphyschemau.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 12/07/2024]
Abstract
Using trianisole heptazine (TAHz) as a monomeric analogue for carbon nitride, we performed ultrafast pump-photolysis-probe transient absorption (TA) spectroscopy on the intermediate TAHzH• heptazinyl radical produced from an excited state PCET reaction with 4-methoxyphenol (MeOPhOH). Our results demonstrate an optically gated photolysis that releases H• and regenerates ground state TAHz. The TAHzH• radical signature at 520 nm had a lifetime of 7.0 ps, and its photodissociation by the photolysis pulse is clearly demonstrated by the ground state bleach recovery of the closed-shell neutral TAHz. This behavior has been previously predicted as evidence of a dissociative πσ* state. For the first time, we experimentally demonstrate photolysis of the TAHzH• heptazinyl radical through a repulsive πσ* state. This is a critical feature of the proposed reaction mechanisms involving water oxidation and CO2 reduction.
Collapse
Affiliation(s)
- Liam Wrigley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Doyk Hwang
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Cody W. Schlenker
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Molecular
Engineering and Sciences Institute, University
of Washington, Seattle, Washington 98195-1652, United States
- Clean
Energy Institute, University of Washington, Seattle, Washington 98195-1653, United
States
| |
Collapse
|
2
|
Yang G, Jiang S, Luo Y, Wang S, Jiang J. Cross-Modal Prediction of Spectral and Structural Descriptors via a Pretrained Model Enhanced with Chemical Insights. J Phys Chem Lett 2024; 15:8766-8772. [PMID: 39163398 DOI: 10.1021/acs.jpclett.4c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Proposing and utilizing machine learning descriptors for chemical property prediction and material screening have become a cutting-edge field in artificial intelligence-enabled chemical research. However, a single descriptor typically captures only partial features of a chemical object, resulting in an information deficiency and limiting generalizability. Obtaining a comprehensive set of descriptors is essential but challenging, especially when accessing some microlevel structural and electronic features due to technological limitations. Herein, we exploit multimodal chemical descriptors to construct an encoder-decoder machine learning framework that enables the cross-modal prediction of spectral and structural descriptors. By pretraining the model to endow it with chemical insights, the multimodal data fusion is implemented in a descriptor-encoded hidden layer. The model's capabilities are validated in the system of CO/NO adsorption on Au/Ag surfaces, demonstrating successful reciprocal prediction of infrared spectra, Raman spectra, and internal coordinates. This work provides a proof-of-concept for the feasibility of cross-modal predictions between different chemical features and will significantly reduce the machine learning model's dependence on complete physicochemical parameters and improve its multitarget prediction capabilities.
Collapse
Affiliation(s)
- Guokun Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuang Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Luo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Song Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
3
|
Feng RR, Wang M, Zhang W, Gai F. Unnatural Amino Acids for Biological Spectroscopy and Microscopy. Chem Rev 2024; 124:6501-6542. [PMID: 38722769 DOI: 10.1021/acs.chemrev.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Due to advances in methods for site-specific incorporation of unnatural amino acids (UAAs) into proteins, a large number of UAAs with tailored chemical and/or physical properties have been developed and used in a wide array of biological applications. In particular, UAAs with specific spectroscopic characteristics can be used as external reporters to produce additional signals, hence increasing the information content obtainable in protein spectroscopic and/or imaging measurements. In this Review, we summarize the progress in the past two decades in the development of such UAAs and their applications in biological spectroscopy and microscopy, with a focus on UAAs that can be used as site-specific vibrational, fluorescence, electron paramagnetic resonance (EPR), or nuclear magnetic resonance (NMR) probes. Wherever applicable, we also discuss future directions.
Collapse
Affiliation(s)
- Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Manxi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Mäusle SM, Agarwala N, Eichmann VG, Dau H, Nürnberg DJ, Hastings G. Nanosecond time-resolved infrared spectroscopy for the study of electron transfer in photosystem I. PHOTOSYNTHESIS RESEARCH 2024; 159:229-239. [PMID: 37420121 PMCID: PMC10991071 DOI: 10.1007/s11120-023-01035-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/21/2023] [Indexed: 07/09/2023]
Abstract
Microsecond time-resolved step-scan FTIR difference spectroscopy was used to study photosystem I (PSI) from Thermosynechococcus vestitus BP-1 (T. vestitus, formerly known as T. elongatus) at 77 K. In addition, photoaccumulated (P700+-P700) FTIR difference spectra were obtained at both 77 and 293 K. The FTIR difference spectra are presented here for the first time. To extend upon these FTIR studies nanosecond time-resolved infrared difference spectroscopy was also used to study PSI from T. vestitus at 296 K. Nanosecond infrared spectroscopy has never been used to study PSI samples at physiological temperatures, and here it is shown that such an approach has great value as it allows a direct probe of electron transfer down both branches in PSI. In PSI at 296 K, the infrared flash-induced absorption changes indicate electron transfer down the B- and A-branches is characterized by time constants of 33 and 364 ns, respectively, in good agreement with visible spectroscopy studies. These time constants are associated with forward electron transfer from A1- to FX on the B- and A-branches, respectively. At several infrared wavelengths flash-induced absorption changes at 296 K recover in tens to hundreds of milliseconds. The dominant decay phase is characterized by a lifetime of 128 ms. These millisecond changes are assigned to radical pair recombination reactions, with the changes being associated primarily with P700+ rereduction. This conclusion follows from the observation that the millisecond infrared spectrum is very similar to the photoaccumulated (P700+-P700) FTIR difference spectrum.
Collapse
Affiliation(s)
- Sarah M Mäusle
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Viktor G Eichmann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| | - Dennis J Nürnberg
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany.
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
5
|
Wu CC, Tsai YX, Chu LK, Chen IC. Investigation of Electronic Structures of Triplet States Using Step-Scan Time-Resolved Fourier-Transform Near-Infrared Spectroscopy. J Phys Chem Lett 2024; 15:912-918. [PMID: 38241171 PMCID: PMC10839901 DOI: 10.1021/acs.jpclett.3c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Triplet transitions of light-emitting materials, including rose bengal, tris(2-phenylpyridine)iridium(III) [Ir(ppy)3], tris(1-phenylisoquinoline)iridium(III) [Ir(piq)3], and bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic), were studied using step-scan time-resolved Fourier-transform near-infrared spectroscopy. The samples were excited to their singlet excited states by a 355 nm laser and then underwent efficient conversions/crossings to their triplet manifolds. For rose bengal, a transient absorption band appeared at 9400 cm-1, attributed to the T3 ← T1 transition based on the corresponding time evolution and the theoretical calculations. For Ir(ppy)3, Ir(piq)3, and FIrpic, the most intense bands were observed at 7700, 7500, and 7500 cm-1 and assigned to T7 ← T1, T6 ← T1, and T6 ← T1 transitions, respectively. For Ir(ppy)3, the most intense band involved transitions between different triplet metal-to-ligand charge transfer (3MLCT) states, while for Ir(piq)3 and FIrpic, they involved a metal center to 3MLCT transition. These T1 states were assigned to 3MLCT.
Collapse
Affiliation(s)
- Chia Chun Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300044, Republic
of China
| | - Yu-Xiang Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300044, Republic
of China
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300044, Republic
of China
| | - I-Chia Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300044, Republic
of China
| |
Collapse
|
6
|
Glotz G, Püschmann S, Haas M, Gescheidt G. Direct detection of photo-induced reactions by IR: from Brook rearrangement to photo-catalysis. Photochem Photobiol Sci 2023:10.1007/s43630-023-00406-4. [PMID: 36933157 DOI: 10.1007/s43630-023-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
In situ IR detection of photoreactions induced by the light of LEDs at appropriate wavelengths provides a simple, cost-effective, and versatile method to get insight into mechanistic details. In particular, conversions of functional groups can be selectively followed. Overlapping UV-Vis bands or fluorescence from the reactants and products and the incident light do not obstruct IR detection. Compared with in situ photo-NMR, our setup does not require tedious sample preparation (optical fibers) and offers a selective detection of reactions, even at positions where 1H-NMR lines overlap or 1H resonances are not clear-cut. We illustrate the applicability of our setup following the photo-Brook rearrangement of (adamant-1-yl-carbonyl)-tris(trimethylsilyl)silane, address photo-induced α-bond cleavage (1-hydroxycyclohexyl phenyl ketone), study photoreduction using tris(bipyridine)ruthenium(II), investigate photo-oxygenation of double bonds with molecular oxygen and the fluorescent 2,4,6-triphenylpyrylium photocatalyst, and address photo-polymerization. With the LED/FT-IR combination, reactions can be qualitatively followed in fluid solution, (highly) viscous environments, and in the solid state. Viscosity changes during the reaction (e.g., during a polymerization) do not obstruct the method.
Collapse
Affiliation(s)
- Gabriel Glotz
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria.
| | - Sabrina Püschmann
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Michael Haas
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria
| |
Collapse
|
7
|
Identification of a Ubiquinone–Ubiquinol Quinhydrone Complex in Bacterial Photosynthetic Membranes and Isolated Reaction Centers by Time-Resolved Infrared Spectroscopy. Int J Mol Sci 2023; 24:ijms24065233. [PMID: 36982307 PMCID: PMC10049466 DOI: 10.3390/ijms24065233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Ubiquinone redox chemistry is of fundamental importance in biochemistry, notably in bioenergetics. The bi-electronic reduction of ubiquinone to ubiquinol has been widely studied, including by Fourier transform infrared (FTIR) difference spectroscopy, in several systems. In this paper, we have recorded static and time-resolved FTIR difference spectra reflecting light-induced ubiquinone reduction to ubiquinol in bacterial photosynthetic membranes and in detergent-isolated photosynthetic bacterial reaction centers. We found compelling evidence that in both systems under strong light illumination—and also in detergent-isolated reaction centers after two saturating flashes—a ubiquinone–ubiquinol charge-transfer quinhydrone complex, characterized by a characteristic band at ~1565 cm−1, can be formed. Quantum chemistry calculations confirmed that such a band is due to formation of a quinhydrone complex. We propose that the formation of such a complex takes place when Q and QH2 are forced, by spatial constraints, to share a common limited space as, for instance, in detergent micelles, or when an incoming quinone from the pool meets, in the channel for quinone/quinol exchange at the QB site, a quinol coming out. This latter situation can take place both in isolated and membrane bound reaction centers Possible consequences of the formation of this charge-transfer complex under physiological conditions are discussed.
Collapse
|
8
|
Biliškov N. Infrared spectroscopic monitoring of solid-state processes. Phys Chem Chem Phys 2022; 24:19073-19120. [DOI: 10.1039/d2cp01458k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We put a spotlight on IR spectroscopic investigations in materials science by providing a critical insight into the state of the art, covering both fundamental aspects, examples of its utilisation, and current challenges and perspectives focusing on the solid state.
Collapse
Affiliation(s)
- Nikola Biliškov
- Rudjer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, QC, H3A 0B8, Canada
| |
Collapse
|