1
|
Pérez-Gutiérrez E, Ahsin A, El Bakri Y, Venkatesan P, Thamotharan S, Percino MJ. Color properties and non-covalent interactions in hydrated (Z)-4-(1-cyano-2-(2,4,5-trimethoxyphenyl)-vinyl)pyridin-1-ium chloride salt: Insights from experimental and theoretical studies. Heliyon 2023; 9:e21040. [PMID: 37954267 PMCID: PMC10637909 DOI: 10.1016/j.heliyon.2023.e21040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 11/14/2023] Open
Abstract
The optical charge-transfer (CT) property and the crystal structure of (Z)-4-(1-cyano-2-(2,4,5-trimethoxyphenyl)vinyl)pyridin-1-ium chloride monohydrate salt (I), which belongs to an acrylonitrile family, was studied. The title salt, I, was characterized using different spectroscopy techniques and a single-crystal X-ray diffraction study combined with quantum chemical computations. The results showed that the color properties of I are determined by the CT, changes in bandgap, optical absorption, and various non-covalent interactions. The HOMO-LUMO energy gaps are 5.41 eV and 5.23 eV for the precursor and salt, respectively. It was demonstrated that π-π stacking interactions lead to the formation of intercalated dimers and donor-acceptor interactions assisted by hydrogen bonds; the dimers and interactions are different between the precursor and the salt. The cation moiety is mainly stabilized by N(1)+-H···Cl, and the anion is predominantly stabilized by strong O(1W)- H⋯ Cl- bonds as well as the hydrogen bonds with the MeO group O(2W)-H⋯O(1) and O(2W)-H⋯O(1W). The charge transfer between cation and anion moieties in the structure is established through NBO analysis.
Collapse
Affiliation(s)
- Enrique Pérez-Gutiérrez
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3, Eco-campus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Pue. Mexico
| | - Atazaz Ahsin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of chemical sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin prospect 76, Chelyabinsk, 454080, Russian Federation
| | - Perumal Venkatesan
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3, Eco-campus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Pue. Mexico
- Department of Chemistry, Srimad Andavan Arts and Science College (Autonomous), T.V. Koil, Tiruchirappalli 620 005, India
| | - S. Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613 401, India
| | - M. Judith Percino
- Unidad de Polímeros y Electrónica Orgánica, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Val3, Eco-campus Valsequillo, Independencia O2 Sur 50, San Pedro Zacachimalpa, Pue. Mexico
| |
Collapse
|
2
|
Mlakić M, Odak I, Faraho I, Bosnar M, Banjanac M, Lasić Z, Marinić Ž, Barić D, Škorić I. Synthesis, Photochemistry, Computational Study and Potential Application of New Styryl-Thiophene and Naphtho-Thiophene Benzylamines. Int J Mol Sci 2022; 24:ijms24010610. [PMID: 36614053 PMCID: PMC9820070 DOI: 10.3390/ijms24010610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
In this research, the synthesis, photochemistry, and computational study of new cis- and trans-isomers of amino-thienostilbenes is performed to test the efficiency of their production and acid resistance, and to investigate their electronic structure, photoreactivity, photophysical characteristics, and potential biological activity. The electronic structure and conformations of synthesized thienostilbene amines and their photocyclization products are examined computationally, along with molecular modeling of amines possessing two thiophene rings that showed inhibitory potential toward cholinesterases. New amino-styryl thiophenes, with favorable photophysical properties and proven acid resistance, represent model compounds for their water-soluble ammonium salts as potential styryl optical dyes. The comparison with organic dyes possessing a trans-aminostilbene subunit as the scaffold shows that the newly synthesized trans-aminostilbenes have very similar absorbance wavelengths. Furthermore, their functionalized cis-isomers and photocyclization products are good candidates for cholinesterase inhibitors because of the structural similarity of the molecular skeleton to some already proven bioactive derivatives.
Collapse
Affiliation(s)
- Milena Mlakić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
| | - Ilijana Odak
- Department of Chemistry, Faculty of Science and Education, University of Mostar, Matice Hrvatske bb, 88000 Mostar, Bosnia and Herzegovina
| | - Ivan Faraho
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Martina Bosnar
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Mihailo Banjanac
- Pharmacology In Vitro, Selvita Ltd., Prilaz Baruna Filipovića 29, HR-10000 Zagreb, Croatia
| | - Zlata Lasić
- Teva api Analytical R&D, Pliva, Prilaz Baruna Filipovića 25, HR-10000 Zagreb, Croatia
| | - Željko Marinić
- NMR Center, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Danijela Barić
- Group for Computational Life Sciences, Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Correspondence: (D.B.); (I.Š.); Tel.: +385-1-4571-385 (D.B.); +385-1-4597-241 (I.Š.)
| | - Irena Škorić
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000 Zagreb, Croatia
- Correspondence: (D.B.); (I.Š.); Tel.: +385-1-4571-385 (D.B.); +385-1-4597-241 (I.Š.)
| |
Collapse
|
3
|
Tuning the Photophysics of Two-Arm Bis[(dimethylamino)styryl]benzene Derivatives by Heterocyclic Substitution. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248725. [PMID: 36557858 PMCID: PMC9787945 DOI: 10.3390/molecules27248725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
The identification of novel molecular systems with high fluorescence and significant non-linear optical (NLO) properties is a hot topic in the continuous search for new emissive probes. Here, the photobehavior of three two-arm bis[(dimethylamino)styryl]benzene derivatives, where the central benzene was replaced by pyridine, furan, or thiophene, was studied by stationary and time-resolved spectroscopic techniques with ns and fs resolution. The three molecules under investigation all showed positive fluorosolvatochromism, due to intramolecular charge-transfer (ICT) dynamics from the electron-donor dimethylamino groups, and significant fluorescence quantum yields, because of the population of a planar and emissive ICT state stabilized by intramolecular hydrogen-bond-like interactions. The NLO properties (hyperpolarizability coefficient and TPA cross-section) were also measured. The obtained results allowed the role of the central heteroaromatic ring to be disclosed. In particular, the introduction of the thiophene ring guarantees high fluorescent quantum yields irrespective of the polarity of the medium, and the largest hyperpolarizability coefficient because of the increased conjugation. An important and structure-dependent involvement of the triplet state was also highlighted, with the intersystem crossing being competitive with fluorescence, especially in the thiophene derivative, where the triplet was found to significantly sensitize molecular oxygen even in polar environment, leading to possible applications in photodynamic therapy.
Collapse
|
4
|
Cesaretti A, Mencaroni L, Bonaccorso C, Botti V, Calzoni E, Carlotti B, Fortuna CG, Montegiove N, Spalletti A, Elisei F. Amphiphilicity-Controlled Localization of Red Emitting Bicationic Fluorophores in Tumor Cells Acting as Bio-Probes and Anticancer Drugs. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123713. [PMID: 35744843 PMCID: PMC9230006 DOI: 10.3390/molecules27123713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Small organic molecules arouse lively interest for their plethora of possible biological applications, such as anticancer therapy, for their ability to interact with nucleic acids, or bioimaging, thanks to their fluorescence emission. Here, a panchromatic series of styryl-azinium bicationic dyes, which have already proved to exhibit high water-solubility and significant red fluorescence in water, were investigated through spectrofluorimetric titrations to assess the extent of their association constants with DNA and RNA. Femtosecond-resolved transient absorption spectroscopy was also employed to characterize the changes in the photophysical properties of these fluorophores upon interaction with their biological targets. Finally, in vitro experiments conducted on tumor cell lines revealed that some of the bicationic fluorophores had a peculiar localization within cell nuclei exerting important antiproliferative effects, others were instead found to localize in the cytoplasm without leading to cell death, being useful to mark specific organelles in light of live cell bioimaging. Interestingly, this molecule-dependent behavior matched the different amphiphilicity featured by these bioactive compounds, which are thus expected to be caught in a tug-of-war between lipophilicity, ensured by the presence of aromatic rings and needed to pass cell membranes, and hydrophilicity, granted by charged groups and necessary for stability in aqueous media.
Collapse
Affiliation(s)
- Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Letizia Mencaroni
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
- Correspondence: ; Tel.: +39-075-585-5590
| | - Carmela Bonaccorso
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.B.); (C.G.F.)
| | - Valentina Botti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Cosimo Gianluca Fortuna
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy; (C.B.); (C.G.F.)
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Anna Spalletti
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| | - Fausto Elisei
- Department of Chemistry, Biology and Biotechnology and “Centro di Eccellenza Materiali Innovativi Nanostrutturati” (CEMIN), University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (A.C.); (V.B.); (E.C.); (B.C.); (N.M.); (A.S.); (F.E.)
| |
Collapse
|