1
|
Zhang C, Weng Y, Wang H, Zhan S, Li C, Zheng D, Lin Q. A synergistic effect of triptolide and curcumin on rheumatoid arthritis by improving cell proliferation and inducing cell apoptosis via inhibition of the IL-17/NF-κB signaling pathway. Int Immunopharmacol 2024; 142:112953. [PMID: 39226828 DOI: 10.1016/j.intimp.2024.112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, systemic autoimmune disease. While triptolide (TPL) and curcumin (CUR) are known to have multiple beneficial effects on RA, the combined effect of TPL and CUR remains unexplored. This study aimed to investigate their synergistic effect on cell proliferation and apoptosis via the IL-17/NF-κB signaling pathway. The collagen-induced arthritis (CIA) rat model was established, showing severe joint and synovial damage compared to normal rats. Treatment with TPL and CUR reduced the severity of RA in the CIA rat model and alleviated serum inflammatory cytokines, such as rheumatoid factor, IL-17, TNF-α, IL-1β, and IL-6. The elevated levels of IL-17 and NF-κB in CIA rats were also inhibited, and the resistant apoptosis was aggravated by TPL and CUR. In vitro, the improvement of cell proliferation and induction of apoptosis were observed in LPS-stimulated MH7A cells treated with TPL and CUR, associated with the inhibition of the IL-17/NF-κB signaling pathway. Taken together, a synergistic effect of TPL and CUR on RA may involve relieving symptoms, improving excessive proliferation, inducing apoptosis resistance, and inhibiting the IL-17/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Chaofeng Zhang
- Department of Hematology and Rheumatology, The Affiliated Hospital of Putian University, Fujian Province, China; School of Basic Medicine, Putian University, Fujian Province, China
| | - Yiyang Weng
- Pharmaceutical and Medical Technology College, Putian University, Fujian Province, China
| | - Haibin Wang
- Pharmaceutical and Medical Technology College, Putian University, Fujian Province, China
| | - Siting Zhan
- School of Basic Medicine, Putian University, Fujian Province, China
| | - Chaoqi Li
- Pharmaceutical and Medical Technology College, Putian University, Fujian Province, China
| | - Donghui Zheng
- Medical Image Center, The Affiliated Hospital of Putian University, Fujian Province, China
| | - Qi Lin
- Department of Pharmacy, The Affiliated Hospital of Putian University, Fujian Province, China.
| |
Collapse
|
2
|
Cui T, Huang Z, Luo K, Nie J, Xv Y, Zeng Z, Liao L, Yang X, Zhou H. Identification of Hub Genes and Prediction of Targeted Drugs for Rheumatoid Arthritis and Idiopathic Pulmonary Fibrosis. Biochem Genet 2024:10.1007/s10528-023-10650-z. [PMID: 38334875 DOI: 10.1007/s10528-023-10650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 12/25/2023] [Indexed: 02/10/2024]
Abstract
There is a potential link between rheumatoid arthritis (RA) and idiopathic pulmonary fibrosis (IPF). The aim of this study is to investigate the molecular processes that underlie the development of these two conditions by bioinformatics methods. The gene expression samples for RA (GSE77298) and IPF (GSE24206) were retrieved from the Gene Expression Omnibus (GEO) database. After identifying the overlapping differentially expressed genes (DEGs) for RA and IPF, we conducted functional annotation, protein-protein interaction (PPI) network analysis, and hub gene identification. Finally, we used the hub genes to predict potential medications for the treatment of both disorders. We identified 74 common DEGs for further analysis. Functional analysis demonstrated that cellular components, biological processes, and molecular functions all played a role in the emergence and progression of RA and IPF. Using the cytoHubba plugin, we identified 7 important hub genes, namely COL3A1, SDC1, CCL5, CXCL13, MMP1, THY1, and BDNF. As diagnostic indicators for RA, SDC1, CCL5, CXCL13, MMP1, and THY1 showed favorable values. For IPF, COL3A1, SDC1, CCL5, CXCL13, THY1, and BDNF were favorable diagnostic markers. Furthermore, we predicted 61 Chinese and 69 Western medications using the hub genes. Our research findings demonstrate a shared pathophysiology between RA and IPF, which may provide new insights for more mechanistic research and more effective treatments. These common pathways and hub genes identified in our study offer potential opportunities for developing more targeted therapies that can address both disorders.
Collapse
Affiliation(s)
- Ting Cui
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Zhican Huang
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Kun Luo
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Jingwei Nie
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Yimei Xv
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Zhu Zeng
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Linghan Liao
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Xin Yang
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China
| | - Haiyan Zhou
- College of Acupuncture-Moxibustion and Tuina, Chengdu University of TCM, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
3
|
Du G, Liu M, Qi Y, Lin M, Wu J, Xie W, Ren D, Du S, Jia T, Zhang F, Song W, Liu H. BMP4 up-regulated by 630 nm LED irradiation is associated with the amelioration of rheumatoid arthritis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112828. [PMID: 38101122 DOI: 10.1016/j.jphotobiol.2023.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Rheumatoid arthritis (RA) is caused by inflammatory response of joints with cartilage and damage of synovium and bone erosion. In our previous studies, it has showed that irradiation of 630 nm LED reduce inflammation of synovial fibroblasts and cartilage and bone destruction in RA. However, the key genes and mechanism in ameliorating RA by irradiation of 630 nm LED remains unknown. In this study, human fibroblast-like synoviocytes (FLS) cell line MH7A and primary human RA-FLSs were treated with TNF-α and 630 nm LED irradiation with the different energy density. The mRNA sequencing was performed to screen the differentially expressed genes (DEGs). In all datasets, 10 DEGs were identified through screening. The protein interaction network analysis showed that 8 out of the 10 DEGs interacted with each other including IL-6, CXCL2, CXCL3, MAF, PGF, IL-1RL1, RRAD and BMP4. This study focused on BMP4, which is identified as important morphogens in regulating the development and homeostasis. CCK-8 assay results showed that 630 nm LED irradiation did not affect the cell viability. The qPCR and ELISA results showed that TNF-α stimulation inhibited BMP4 mRNA and protein level and irradiation of 630 nm LED increased the BMP4 mRNA and protein level in MH7A cells. In CIA and transgenic hTNF-α mice models, H&E staining showed that irradiation of 630 nm LED decreased the histological scores assessed from inflammation and bone erosion, while BMP4 expression level was up-regulated after 630 nm LED irradiation. Pearson correlation analysis shown that BMP4 protein expression was negatively correlated with the histological score of CIA mice and transgenic hTNF-α mice. These results indicated that BMP4 increased by irradiation of 630 nm LED was associated with the amelioration of RA, which suggested that BMP4 may be a potential targeting gene for photobiomodulation.
Collapse
Affiliation(s)
- Guoming Du
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Mengyue Liu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yue Qi
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Jiaxin Wu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenting Xie
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Dandan Ren
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Siqi Du
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tong Jia
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| | - Hailiang Liu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
4
|
Meng Q, Lin M, Song W, Wu J, Cao G, Huang P, Su Z, Gu W, Deng X, Xu P, Yang Y, Li H, Liu H, Zhang F. The gut-joint axis mediates the TNF-induced RA process and PBMT therapeutic effects through the metabolites of gut microbiota. Gut Microbes 2023; 15:2281382. [PMID: 38017660 PMCID: PMC10730145 DOI: 10.1080/19490976.2023.2281382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
The gut-joint axis, one of the mechanisms that mediates the onset and progression of joint and related diseases through gut microbiota, and shows the potential as therapeutic target. A variety of drugs exert therapeutic effects on rheumatoid arthritis (RA) through the gut-joint axis. However, the anti-inflammatory and immunomodulatory effect of novel photobiomodulatory therapy (PBMT) on RA need further validation and the involvement of gut-joint axis in this process remains unknown. The present study demonstrated the beneficial effects of PBMT on RA, where we found the restoration of gut microbiota homeostasis, and the related key pathways and metabolites after PBMT. We also discovered that the therapeutic effects of PBMT on RA mainly through the gut-joint axis, in which the amino acid metabolites (Alanine and N-acetyl aspartate) play the key role and rely on the activity of metabolic enzymes in the target organs. Together, the results prove that the metabolites of amino acid from gut microbiota mediate the regulation effect on the gut-joint axis and the therapeutic effect on rheumatoid arthritis of PBMT.
Collapse
Affiliation(s)
- Qingtai Meng
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Monan Lin
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Wuqi Song
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Jiahui Wu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Guoding Cao
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Ping Huang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Zaiyu Su
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Wei Gu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Xueqing Deng
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Peng Xu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Yi Yang
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Hui Li
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| | - Hailiang Liu
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
| | - Fengmin Zhang
- Department of Microbiology, WU Lien-Teh Institute, Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Laboratory of Infection and Immunity, Harbin Medical University, Harbin, China
| |
Collapse
|