1
|
Lu H, Ren M, Lin R, Jin K, Mao C. Developmental responses of roots to limited phosphate availability: Research progress and application in cereals. PLANT PHYSIOLOGY 2024; 196:2162-2174. [PMID: 39288198 DOI: 10.1093/plphys/kiae495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
Phosphorus (P), an essential macronutrient, is crucial for plant growth and development. However, available inorganic phosphate (Pi) is often scarce in soil, and its limited mobility exacerbates P deficiency in plants. Plants have developed complex mechanisms to adapt to Pi-limited soils. The root, the primary interface of the plant with soil, plays an essential role in plant adaptation to Pi-limited soil environments. Root system architecture significantly influences Pi acquisition via the dynamic modulation of primary root and/or crown root length, lateral root proliferation and length, root hair development, and root growth angle in response to Pi availability. This review focuses on the physiological, anatomical, and molecular mechanisms underpinning changes in root development in response to Pi starvation in cereals, mainly focusing on the model monocot plant rice (Oryza sativa). We also review recent efforts to modify root architecture to enhance P uptake efficiency in crops and propose future research directions aimed at the genetic improvement of Pi uptake and use efficiency in crops based on root system architecture.
Collapse
Affiliation(s)
- Hong Lu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meiyan Ren
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Rongbin Lin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kangming Jin
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chuanzao Mao
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
3
|
Hakla HR, Sharma S, Urfan M, Mandlik R, Kumawat S, Rajput P, Khajuria B, Chowdhary R, Deshmukh R, Roychowdhury R, Pal S. Genome-Wide Association Study (GWAS) for Identifying SNPs and Genes Related to Phosphate-Induced Phenotypic Traits in Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:457. [PMID: 38337989 PMCID: PMC10857258 DOI: 10.3390/plants13030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Phosphate (P) is a crucial macronutrient for normal plant growth and development. The P availability in soils is a limitation factor, and understanding genetic factors playing roles in plant adaptation for improving P uptake is of great biological importance. Genome-wide association studies (GWAS) have become indispensable tools in unraveling the genetic basis of complex traits in various plant species. In this study, a comprehensive GWAS was conducted on diverse tomato (Solanum lycopersicum L.) accessions grown under normal and low P conditions for two weeks. Plant traits such as shoot height, primary root length, plant biomass, shoot inorganic content (SiP), and root inorganic content (RiP) were measured. Among several models of GWAS tested, the Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK) models were used for the identification of single nucleotide polymorphisms (SNPs). Among all the traits analyzed, significantly associated SNPs were recorded for PB, i.e., 1 SNP (SSL4.0CH10_49261145) under control P, SiP, i.e., 1 SNP (SSL4.0CH08_58433186) under control P and 1 SNP (SSL4.0CH08_51271168) under low P and RiP i.e., 2 SNPs (SSL4.0CH04_37267952 and SSL4.0CH09_4609062) under control P and 1 SNP (SSL4.0CH09_3930922) under low P condition. The identified SNPs served as genetic markers pinpointing regions of the tomato genome linked to P-responsive traits. The novel candidate genes associated with the identified SNPs were further analyzed for their protein-protein interactions using STRING. The study provided novel candidate genes, viz. Solyc10g050370 for PB under control, Solyc08g062490, and Solyc08g062500 for SiP and Solyc09g010450, Solyc09g010460, Solyc09g010690, and Solyc09g010710 for RiP under low P condition. These findings offer a glimpse into the genetic diversity of tomato accessions' responses to P uptake, highlighting the potential for tailored breeding programs to develop P-efficient tomato varieties that could adapt to varying soil conditions, making them crucial for sustainable agriculture and addressing global challenges, such as soil depletion and food security.
Collapse
Affiliation(s)
- Haroon Rashid Hakla
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
- Central Integrated Pest Management Centre (CIPMC), Srinagar 190008, India
| | - Shubham Sharma
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Mohammad Urfan
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Rushil Mandlik
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (R.M.); (S.K.); (R.D.)
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Surbhi Kumawat
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (R.M.); (S.K.); (R.D.)
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA
| | - Prakriti Rajput
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Bhubneshwari Khajuria
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Rehana Chowdhary
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| | - Rupesh Deshmukh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (R.M.); (S.K.); (R.D.)
- Department of Biotechnology, Central University of Haryana, Mahendergarh 123031, India
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—Volcani Center, Rishon LeZion 7505101, Israel
| | - Sikander Pal
- Plant Physiology Laboratory, Department of Botany, University of Jammu, Jammu 180006, India; (H.R.H.); (S.S.); (M.U.); (P.R.); (B.K.); (R.C.)
| |
Collapse
|
4
|
Singh NRR, Roychowdhury A, Srivastava R, Gaganan GA, Parida AP, Kumar R. Silencing of SlSPX1 and SlSPX2 promote growth and root mycorrhization in tomato (Solanum lycopersicum L.) seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 333:111723. [PMID: 37142098 DOI: 10.1016/j.plantsci.2023.111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/10/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Owing to the essential requirement of phosphorus (P) for growth and development, plants tightly control inorganic phosphate (Pi) homeostasis. SPX-PHR regulatory circuit not only control phosphate homeostasis responses but also root mycorrhization by arbuscular mycorrhiza (AM) fungi. Besides sensing Pi deficiency, SPX (SYG1/Pho81/XPR1) proteins also control the transcription of P starvation inducible (PSI) genes by blocking the activity of PHR1 (PHOSPHATE STARVATION RESPONSE1) homologs in plants under Pi-sufficient conditions. However, the roles of SPX members in Pi homeostasis and AM fungi colonization remain to be fully recognized in tomato. In this study, we identified 17 SPX-domain containing members in the tomato genome. Transcript profiling revealed the high Pi-specific nature of their activation. Four SlSPX members have also induced in AM colonized roots. Interestingly, we found that SlSPX1 and SlSPX2 are induced by P starvation and AM colonization. Further, SlSPX1 and SlSPX2 exhibited varying degrees of interaction with the PHR homologs in this study. Virus-induced gene silencing-based (VIGS) transcript inhibition of these genes alone or together promoted the accumulation of higher total soluble Pi in tomato seedlings and improved their growth. It also enhanced AM fungi colonization in the roots of SlSPX1 and SlSPX2 silenced seedlings. Overall, the present study provides evidence in support of SlSPX members being good candidates for improving AM fungi colonization potential in tomato.
Collapse
Affiliation(s)
| | | | - Rajat Srivastava
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | - Adwaita Prasad Parida
- Department of Entomology, Texas A&M University, College Station, Texas 77843-2475, USA
| | - Rahul Kumar
- Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|