1
|
Lu S, Zeng H, Xiong F, Yao M, He S. Advances in environmental DNA monitoring: standardization, automation, and emerging technologies in aquatic ecosystems. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1368-1384. [PMID: 38512561 DOI: 10.1007/s11427-023-2493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/30/2023] [Indexed: 03/23/2024]
Abstract
Environmental DNA (eDNA) monitoring, a rapidly advancing technique for assessing biodiversity and ecosystem health, offers a noninvasive approach for detecting and quantifying species from various environmental samples. In this review, a comprehensive overview of current eDNA collection and detection technologies is provided, emphasizing the necessity for standardization and automation in aquatic ecological monitoring. Furthermore, the intricacies of water bodies, from streams to the deep sea, and the associated challenges they pose for eDNA capture and analysis are explored. The paper delineates three primary eDNA survey methods, namely, bringing back water, bringing back filters, and bringing back data, each with specific advantages and constraints in terms of labor, transport, and data acquisition. Additionally, innovations in eDNA sampling equipment, including autonomous drones, subsurface samplers, and in-situ filtration devices, and their applications in monitoring diverse taxa are discussed. Moreover, recent advancements in species-specific detection and eDNA metabarcoding are addressed, highlighting the integration of novel techniques such as CRISPR-Cas and nanopore sequencing that enable precise and rapid detection of biodiversity. The implications of environmental RNA and epigenetic modifications are considered for future applications in providing nuanced ecological data. Lastly, the review stresses the critical role of standardization and automation in enhancing data consistency and comparability for robust long-term biomonitoring. We propose that the amalgamation of these technologies represents a paradigm shift in ecological monitoring, aligning with the urgent call for biodiversity conservation and sustainable management of aquatic ecosystems.
Collapse
Affiliation(s)
- Suxiang Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Fan Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Meng Yao
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
- School of Life Sciences, Peking University, Beijing, 100871, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China.
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
2
|
Jo TS. Larger particle size distribution of environmental RNA compared to environmental DNA: a case study targeting the mitochondrial cytochrome b gene in zebrafish (Danio rerio) using experimental aquariums. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:18. [PMID: 38502308 DOI: 10.1007/s00114-024-01904-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/21/2024]
Abstract
Environmental RNA (eRNA) analysis is conventionally expected to infer physiological information about organisms within their ecosystems, whereas environmental DNA (eDNA) analysis only infers their presence and abundance. Despite the promise of eRNA application, basic research on eRNA characteristics and dynamics is limited. The present study conducted aquarium experiments using zebrafish (Danio rerio) to estimate the particle size distribution (PSD) of eRNA in order to better understand the persistence state of eRNA particles. Rearing water samples were sequentially filtered using different pore-size filters, and the resulting size-fractioned mitochondrial cytochrome b (CytB) eDNA and eRNA data were modeled with the Weibull complementary cumulative distribution function (CCDF) to estimate the parameters characterizing the PSDs. It was revealed that the scale parameter (α) was significantly higher (i.e., the mean particle size was larger) for eRNA than eDNA, while the shape parameter (β) was not significantly different between them. This result supports the hypothesis that most eRNA particles are likely in a protected, intra-cellular state, which mitigates eRNA degradation in water. Moreover, these findings also imply the heterogeneous dispersion of eRNA relative to eDNA and suggest an efficient method of eRNA collection using a larger pore-size filter. Further studies on the characteristics and dynamics of eRNA particles should be pursued in the future.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, 102-0083, Japan.
- Ryukoku Center for Biodiversity Science, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
| |
Collapse
|
3
|
Jo TS, Matsuda N, Hirohara T, Yamanaka H. Comparative evaluation for the performance of environmental DNA and RNA analyses targeting mitochondrial and nuclear genes from ayu (Plecoglossus altivelis). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:374. [PMID: 38491297 DOI: 10.1007/s10661-024-12535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Environmental DNA and RNA (eDNA and eRNA; collectively eNA) analyses have the potential for non-invasive and cost-efficient biomonitoring compared with traditional capture-based surveys. Although various types of eNA particles, including not only mitochondrial eDNA but also nuclear eDNA and their transcripts, are present in the water, performances of eNA detection and quantification have not yet been evaluated sufficiently across multiple mitochondrial and nuclear genes. We conducted a tank experiment with ayu (Plecoglossus altivelis) to compare the detection sensitivity, yields per water sample, and quantification variability between replicates of each type of eNAs. The assay targeting the multi-copy nuclear gene exhibited a higher sensitivity than the assay targeting the mitochondrial gene, and both the target eDNA and eRNA concentrations per water sample were higher for the nuclear gene. On the contrary, variation in eRNA quantifications per sample does not necessarily correspond to that in eDNA, and the intra-sample quantification variability (represented as the CVs between PCR replicates) tended to be larger for eRNA than eDNA. Our results suggested that, even if suitable to the sensitive detection of species occurrence, the use of eRNA particularly derived from multi-copy nuclear gene may not be necessarily appropriate for the reliable assessment of species abundance. The findings in this study would help optimize eNA analyses for making biomonitoring and stock assessment in aquatic environments more efficient and reliable.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.
- Ryukoku Center for Biodiversity Science, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga, 520-2194, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga, 520-2194, Japan.
| | - Nao Matsuda
- Shiga Prefectural Fisheries Experiment Station, 2138-3, Hassaka-cho, Hikone City, Shiga, 522-0057, Japan
| | - Takaya Hirohara
- Graduate School of Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga, 520-2194, Japan
- KANSO TECHNOS CO., LTD., Azuchimachi 1-3-5, Chuo-ku, Osaka, 541-0052, Japan
| | - Hiroki Yamanaka
- Ryukoku Center for Biodiversity Science, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga, 520-2194, Japan
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-cho, Seta, Otsu City, Shiga, 520-2194, Japan
| |
Collapse
|
4
|
Jo TS. Validating post-enrichment steps in environmental RNA analysis for improving its availability from water samples. Funct Integr Genomics 2023; 23:338. [PMID: 37975936 DOI: 10.1007/s10142-023-01269-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Environmental RNA (eRNA) analysis is expected to inclusively provide the physiological information of a population and community without individual sampling, having the potential for the improved monitoring of biodiversity and ecosystem function. Protocol development for maximizing eRNA availability is crucial to interpret its detection and quantification results with high accuracy and reliability, but the methodological validation and improvement of eRNA collection and processing methods are scarce. In this study, the technical steps after eRNA extraction, including genomic DNA (gDNA) removal and reverse transcription, were focused on and their performances were compared by zebrafish (Danio rerio) aquarium experiments. Additionally, this study also focused on the eRNA quantification variabilities between replicates and compared them between the PCR and sample levels. Results showed that (i) there was a trade-off between gDNA removal approaches and eRNA yields and an excess gDNA removal could lead to the false-negative eRNA detection, (ii) the use of the gene-specific primers for reverse transcription could increase the eRNA yields for multiple mitochondrial and nuclear genes compared with the random hexamer primers, and (iii) the coefficient of variation (CV) values of eRNA quantifications between PCR replicates were substantially lower for those between samples. Including the study, further knowledge for the sensitive and precise detection of macro-organismal eRNA should be needed for increasing the reliability and robustness of eRNA-based biomonitoring.
Collapse
Affiliation(s)
- Toshiaki S Jo
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-Ku, Tokyo, 102-0083, Japan.
- Ryukoku Center for Biodiversity Science, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
- Faculty of Advanced Science and Technology, Ryukoku University, 1-5, Yokotani, Oe-Cho, Seta, Otsu City, Shiga, 520-2194, Japan.
| |
Collapse
|