1
|
Gabriel JL, Aogaichi T, Dearolf CR, Plaut GW. Apparent Stability Constants of Magnesium and Calcium Complexes of Tricarboxylates. ANAL LETT 2006. [DOI: 10.1080/00032718308065155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Sheikh-Hamad D, Rouse D, Yang Y. Regulation of stanniocalcin in MDCK cells by hypertonicity and extracellular calcium. Am J Physiol Renal Physiol 2000; 278:F417-24. [PMID: 10710546 DOI: 10.1152/ajprenal.2000.278.3.f417] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Differential display RT-PCR cloning method was applied to poly(A)(+) RNA isolated from Madin-Darby canine kidney (MDCK) cells in isotonic or hypertonic medium. A differentially expressed 360-bp PCR fragment was isolated, subcloned, sequenced, and used to screen an MDCK cDNA library constructed in lambdaZapII. A composite sequence of two overlapping cDNA clones provided 1,053 bp of sequence that was 93% identical to human stanniocalcin and corresponded to the 3'-end of the mRNA. Although the fish homolog of this hormone inhibits calcium uptake by the gill and intestine, the function of mammalian stanniocalcin remains unknown. Stanniocalcin cDNA probe hybridizes to a 4.4-kb mRNA that is induced eightfold by hypertonicity, in a manner that is dependent on medium organic osmolytes. The mRNA induction correlates with increased total cellular content of the protein and its concomitant release to the medium, consistent with secretion for autocrine or paracrine activity. Furthermore, induction of the mRNA by hypertonicity is dependent on extracellular calcium and displays a threshold phenomenon. The data suggest that kidney stanniocalcin may have a role in the adaptation of kidney cells to osmotic stress, in a manner that is extracellular calcium dependent.
Collapse
Affiliation(s)
- D Sheikh-Hamad
- Renal Section, Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
3
|
Unterweger N, Schlatterer C. Introduction of calcium buffers into the cytosol of Dictyostelium discoideum amoebae alters cell morphology and inhibits chemotaxis. Cell Calcium 1995; 17:97-110. [PMID: 7736566 DOI: 10.1016/0143-4160(95)90079-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Differentiating Dictyostelium discoideum amoebae respond chemotactically towards the attractant cAMP. To test whether chemotaxis requires the establishment of a spatial gradient of the cytosolic calcium concentration ([Ca2+]i) we scrape-loaded calcium chelating agents with different affinities for Ca2+ into the cytosol of the cells. The buffers were 1,2-bis(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA) and its derivatives. Parameters analyzed were general cell morphology and the capability to protrude pseudopods and to migrate towards a cAMP-filled capillary. The chelators dose- and time-dependently inhibited spreading of the amoebae on the substrate. Both oriented pseudopod formation and locomotion of the cells were reduced. This effect was overcome by extracellular Ca2+, but not Mg2+. The effects of BAPTA derivatives were compared to the inhibition by BAPTA. A dose-response curve was obtained; 5,5'-difluoro-BAPTA was the most potent analogue. We conclude that a [Ca2+]i-gradient is necessary for orientation and locomotion. Chemotaxis experiments performed in the presence of extracellular EGTA revealed that liberation of Ca2+ from intracellular stores is sufficient for pseudopod formation; yet under physiological conditions influx of extracellular Ca2+ is also used to establish the gradient.
Collapse
Affiliation(s)
- N Unterweger
- Faculty of Biology, University of Konstanz, Germany
| | | |
Collapse
|
4
|
Schlatterer C, Gollnick F, Schmidt E, Meyer R, Knoll G. Challenge with high concentrations of cyclic AMP induces transient changes in the cytosolic free calcium concentration in Dictyostelium discoideum. J Cell Sci 1994; 107 ( Pt 8):2107-15. [PMID: 7983172 DOI: 10.1242/jcs.107.8.2107] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dictyostelium discoideum cells use cyclic AMP (cAMP) for chemotactic signaling as well as for differentiation. The precise regulation of the cytosolic Ca2+ concentration ([Ca2+]i) seems to play a key role for both processes. We performed single cell measurements of [Ca2+]i in amoebae that were starved in suspension for various times and scrape-loaded with the Ca2+ indicator fura-2. Stimulation of cells with cAMP at the concentration required to induce gene expression (> or = 100 microM) elicited a global transient increase in [Ca2+]i that depended on the presence of external Ca2+. Both vegetative and aggregation-competent cells displayed a rise in [Ca2+]i, with aggregation-competent cells responding more often than vegetative cells. Basal [Ca2+]i in the presence of Ca2+ was high in vegetative cells and declined during development; the cAMP-induced rise in [Ca2+]i was higher and lasted longer in vegetative cells than in aggregative cells. The addition of 2′-deoxy-cAMP, which binds to the cAMP receptor, induced an increase in [Ca2+]i, whereas the membrane-permeant analogue 8-bromo-cAMP that has a low affinity for the receptor but activates cAMP-dependent protein kinase had no effect. This indicates that the change in [Ca2+]i is mediated by the cell surface cAMP receptor. Since HC85 mutant cells, which lack the G alpha 2 subunit of the G-protein that couples the receptor to phospholipase C, also responded to stimulation with cAMP, the Ca2+ influx does not seem to be triggered by the phosphoinositide signaling cascade.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Schlatterer
- Fakultät für Biologie, Universität Konstanz, Germany
| | | | | | | | | |
Collapse
|
5
|
Matsushita S, Pette D. Inactivation of sarcoplasmic-reticulum Ca(2+)-ATPase in low-frequency-stimulated muscle results from a modification of the active site. Biochem J 1992; 285 ( Pt 1):303-9. [PMID: 1386217 PMCID: PMC1132781 DOI: 10.1042/bj2850303] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular changes underlying the partial inactivation of the sarcoplasmic-reticulum (SR) Ca(2+-) ATPase in low-frequency-stimulated fast-twitch muscle were investigated in the present study. The specific Ca(2+)-ATPase activity, as well as the ATP- and acetyl phosphate-driven Ca2+ uptakes by the SR, were reduced by approx. 30% in 4-day-stimulated muscle. Phosphoprotein formation of the enzyme in the presence of ATP or Pi was also decreased to the same extent. Measurements of ATP binding revealed a 30% decrease in binding to the enzyme. These changes were accompanied by similar decreases in the ligand-induced (ATP, ADP, Pi) intrinsic tryptophan fluorescence. A decreased binding of fluorescein isothiocyanate (FITC) corresponded to the lower ATP binding and phosphorylation of the enzyme. Moreover, Pi-induced changes in fluorescence of the FITC-labelled enzyme did not differ between SR from stimulated and contralateral muscles, indicating that Ca(2+)- ATPase molecules which did not bind FITC were responsible for the decreased Pi-dependent phosphorylation, and therefore represented the inactive form of the enzyme. No differences existed between the Ca(2+)-induced changes in the intrinsic fluorescence of SR from stimulated and contralateral muscles which fit their similar Ca(2+)-binding characteristics. Taking the proposed architecture of the Ca2(+)-ATPase into consideration, our results suggest that the inactivation relates to a circumscribed structural alteration of the enzyme in sections of the active site consisting of the nucleotide-binding and phosphorylation domains.
Collapse
Affiliation(s)
- S Matsushita
- Fakultät für Biologie, Universität Konstanz, Federal Republic of Germany
| | | |
Collapse
|
6
|
Sugihira N, Aoki Y, Suzuki KT. ATP-dependent strontium uptake by basolateral membrane vesicles from rat renal cortex in the absence or presence of calcium. Biol Trace Elem Res 1992; 34:45-54. [PMID: 1382521 DOI: 10.1007/bf02783897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
ATP-dependent Sr2+ transport was examined in vitro using basolateral membrane (BLM) vesicles isolated from rat renal cortex to clarify the discrimination mechanisms between strontium (Sr) and calcium (Ca) in renal tubules during reabsorption. ATP-dependent Sr2+ uptake and Ca2+ uptake were observed in renal BLM vesicles and were inhibited by vanadate. Hill plots indicate similar kinetic behavior for Ca2+ and Sr2+ uptake. The apparent Km and Vmax of ATP-dependent Sr2+ uptake were both higher than those for Ca2+ uptake. ATP-dependent Sr2+ uptake by BLM vesicles diminished in the presence of 0.1 microM Ca2+ and was more markedly inhibited by 1 microM Ca2+. Hill plots of Sr2+ uptake data with and without 0.1 microM Ca2+ showed that the cooperative behavior of Sr2+ uptake was not changed by Ca2+. In the presence of 0.1 microM Ca2+, the affinity of the transport system for Sr2+ and the velocity of Sr2+ uptake in the BLM were both decreased. However, the rate of Ca2+ uptake was not diminished by Sr2+ concentrations of less than 1.6 microM. These results suggest that Ca2+ is preferentially transported in the renal cortex BLM when Ca2+ and Sr2+ are present at the same time.
Collapse
Affiliation(s)
- N Sugihira
- National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
7
|
Sonnemann J, Bäuerle A, Winckler T, Mutzel R. A ribosomal calmodulin-binding protein from Dictyostelium. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54467-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
8
|
Knoll G, Braun C, Plattner H. Quenched flow analysis of exocytosis in Paramecium cells: time course, changes in membrane structure, and calcium requirements revealed after rapid mixing and rapid freezing of intact cells. J Cell Biol 1991; 113:1295-304. [PMID: 2045413 PMCID: PMC2289032 DOI: 10.1083/jcb.113.6.1295] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Synchronous exocytosis in Paramecium cells was analyzed on a subsecond time scale. For this purpose we developed a quenched flow device for rapid mixing and rapid freezing of cells without impairment (time resolution in the millisecond range, dead time approximately 30 ms). Cells frozen at defined times after stimulation with the noncytotoxic secretagogue aminoethyldextran were processed by freeze substitution for electron microscopic analysis. With ultrathin sections the time required for complete extrusion of secretory contents was determined to be less than 80 ms. Using freeze-fracture replicas the time required for resealing of the fused membranes was found to be less than 350 ms. During membrane fusion (visible 30 ms after stimulation) specific intramembranous particles in the cell membrane at the attachment sites of secretory organelles ("fusion rosette") disappear, possibly by dissociation of formerly oligomeric proteins. This hitherto unknown type of rapid change in membrane architecture may reflect molecular changes in protein-protein or protein-lipid interactions, presumably crucial for membrane fusion. By a modification of the quenched flow procedure extracellular [Ca++] during stimulation was adjusted to less than or equal to 3 x 10(-8) M, i.e., below intracellular [Ca++]. Only extrusion of the secretory contents, but not membrane fusion, was inhibited. Thus it was possible to separate both secretory events (membrane fusion from contents extrusion) and to discriminate their Ca++ requirements. We conclude that no Ca++ influx is necessary for induction of membrane fusion.
Collapse
Affiliation(s)
- G Knoll
- University Konstanz, Faculty of Biology, Germany
| | | | | |
Collapse
|
9
|
Leberer E, Timms BG, Campbell KP, MacLennan DH. Purification, calcium binding properties, and ultrastructural localization of the 53,000- and 160,000 (sarcalumenin)-dalton glycoproteins of the sarcoplasmic reticulum. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38787-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
10
|
Hadzić A, Sabolić I, Banfić H. Stimulation of ATP-driven Ca2+ pump in the basal-lateral plasma membranes of kidney cortex during compensatory renal growth. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1022:265-72. [PMID: 2156554 DOI: 10.1016/0005-2736(90)90273-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During compensatory renal growth 45Ca2+ transport in basal-lateral plasma membrane vesicles isolated from the rat renal cortex have been investigated. Stimulation of Ca2(+)-ATPase activity was observed, without an effect of compensatory renal growth on Na+/Ca2+ exchanger activity and on passive Ca2+ permeability of the vesicles. Twelve hours following unilateral nephrectomy about 40% increase of Ca2(+)-ATPase activity above control value was observed and this effect was present until the end of the experimental period (7 days). When kinetic parameters for Ca2(+)-ATPase were studied in native membranes, an increase of Vmax was observed, whereas the Km for Ca2+ was similar in control vesicles and vesicles isolated from the remnant kidney. Depletion of endogenous calmodulin resulted in a decrease of Vmax and an increase of Km (Ca2+), while its addition reversed these parameters and increased the Hill coefficient from about 1 to about 2. Once again, only a significant increase of Vmax in vesicles isolated from the remnant kidney above the control value was observed. Finally, increase of Ca2(+)-ATPase activity during compensatory renal growth could be abolished by actinomycin D, indicating that its stimulation is due to protein synthesis.
Collapse
Affiliation(s)
- A Hadzić
- Department of Physiology, Faculty of Medicine, University of Zagreb, Yugoslavia
| | | | | |
Collapse
|
11
|
Abstract
We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1 mM) had no effect on H+ transport. Acridine orange fluorescence in the presence of 0.5 mM Ca2+ (+1 mM EGTA) was 19 +/- 6% of control. Inhibition of ATP-driven H+ transport by Ca2+ was concentration dependent; 0.25 and 0.5 mM Ca2+ (+1 mM EGTA) inhibited acridine orange fluorescence by approximately 50 and approximately 80%, respectively. Ca2+ also produced a concentration-dependent increase in the rate of pH-gradient dissipation. Ca2+ did not affect ATP hydrolysis. ATP-dependent Br- uptake was virtually unchanged in the presence of 0.5 mM Ca2+ (+1 mM EGTA). These vesicles were also shown to transport Ca2+ in an ATP-dependent mode. Inositol 1,4,5-trisphosphate had no effect on ATP-dependent Ca2+ uptake. These results are consistent with the co-existence of an H+ ATPase and an H+/Ca2+ exchanger on these endosomes, the latter transport system using the H+ gradient to energize Ca2+ uptake. Attempts to demonstrate an H+/Ca2+ antiporter in the absence of ATP have been unsuccessful. Yet, when a pH gradient was established by preincubation with ATP and residual ATP was subsequently removed by hexokinase + glucose, stimulation of Ca2+ uptake could be demonstrated. A Ca2(+)-dependent increase in H+ permeability and an ATP-dependent Ca2+ uptake might have important implications for the regulation of vacuolar H+ ATPase activity as well as the homeostasis of cytosolic Ca2+ concentration.
Collapse
Affiliation(s)
- S A Hilden
- Department of Medicine, Tufts University School of Medicine, Boston, Massachusetts
| | | |
Collapse
|
12
|
ATP-driven Ca2+ pump in the basolateral membrane of rat kidney cortex catalyzes an electroneutral Ca2+/H+ antiport. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 945:281-90. [PMID: 2973352 DOI: 10.1016/0005-2736(88)90490-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An ATP-driven Ca2+ pump in the basolateral membrane of rat kidney cortex pumps Ca2+ out of the cell at the expense of MgATP (Km = 0.191 mM). This pump has a high affinity for free Ca2+ (26 nM). Vanadate, lanthanum, N-ethylmaleimide and calmodulin inhibitor R24571 inhibited this pump activity. Dimethyl[2-14C]oxazolidine-2,4-dione [( 14C]DMO) was entrapped in the vesicles in association with the ATP-driven Ca2+ influx. The ATP-driven Ca2+ influx was stimulated by the intravesicular acid pH and an upper convex Lineweaver-Burk reciprocal plot suggested two possible kinetics; one is that this Ca2+ pump is an allosteric enzyme with more than 1.72 H+ binding sites and another is the presence of two Ca2+ pumps with different affinities for H+. Valinomycin study indicated that the ATP-dependent Ca2+ transport by the BLMV was electroneutral and voltage independent. These results strongly suggest that the ATP-driven Ca2+ pump in the renal basolateral membrane catalyzes an electroneutral Ca2+/H+ antiport.
Collapse
|
13
|
Rios-Orlandi EM, MacKenzie RE. The activities of the NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase from ascites tumor cells are kinetically independent. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68833-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Sacks DB, McDonald JM. Insulin-stimulated phosphorylation of calmodulin by rat liver insulin receptor preparations. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)69217-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
15
|
Böhme R, Bumann J, Aeckerle S, Malchow D. A high-affinity plasma membrane Ca2+-ATPase in Dictyostelium discoideum: its relation to cAMP-induced Ca2+ fluxes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 904:125-30. [PMID: 2822110 DOI: 10.1016/0005-2736(87)90093-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Chemotactic stimulation of Dictyostelium discoideum induces an uptake of Ca2+ by the cells followed by a release of Ca2+. In this study we investigated the mechanism of Ca2+ release and found that it was inhibited by La3+, Cd2+ and azide. Ca2+ release occurred in the absence of external Na+, indicating that an Na+/Ca2+ exchange was not involved. Plasma membranes contained high- and low-affinity ATPase activities. Apparent K0.5 values were 8 microM for the major Mg2+-ATPase and 1.1 microM for the high-affinity Ca2+-ATPase, respectively. The Mg2+-ATPase activity was inhibited by elevated concentrations of Ca2+, whereas both Ca2+-ATPases were active in the absence of added Mg2+. The activities of the Ca2+-ATPases were not modified by calmodulin. The high-affinity Ca2+-ATPase was competitively inhibited by La3+ and Cd2+; we suggest that this high-affinity enzyme mediates the release of Ca2+ from D. discoideum cells.
Collapse
Affiliation(s)
- R Böhme
- Fakultät für Biologie, Universität Konstanz, F.R.G
| | | | | | | |
Collapse
|
16
|
Leberer E, Härtner KT, Pette D. Reversible inhibition of sarcoplasmic reticulum Ca-ATPase by altered neuromuscular activity in rabbit fast-twitch muscle. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 162:555-61. [PMID: 2951251 DOI: 10.1111/j.1432-1033.1987.tb10675.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A 50% decrease in both the initial rate and the total capacity of Ca2+ uptake by the sarcoplasmic reticulum (SR) occurred 2 days after the onset of chronic (10 Hz) nerve stimulation in rabbit fast-twitch muscle. Prolonged stimulation (up to 28 days) did not lead to further decreases. This reduction, which was detected in muscle homogenates using a Ca2+-sensitive electrode, was reversible after 6 days cessation of stimulation and was not accompanied by changes in the immunochemically (ELISA) determined tissue level or isozyme characteristics of the SR Ca2+-ATPase protein. However, as measured in isolated SR, it correlated with a reduced specific activity of the Ca2+-ATPase. Kinetic analyses demonstrated that affinities of the SR Ca2+-ATPase towards Ca2+ and ATP were unaltered. Positive cooperativity for Ca2+ binding (h = 1.5) was maintained. However, a 50% decrease in Ca2+-dependent phosphoprotein formation indicated the presence of inactive forms of Ca2+-ATPase in stimulated muscle. The reduced phosphorylation of the enzyme was accompanied by an approximately 50% lowered binding of fluorescein isothiocyanate, a competitor at the ATP-binding site. In view of the unaltered affinity for ATP, this finding suggests that active Ca2+-ATPase molecules coexist in stimulated muscle with inactive enzyme molecules, the latter displaying altered properties at the nucleotide-binding site.
Collapse
|
17
|
McDonald JM, Pershadsingh HA, Colca J. The role of calcium and calmodulin in insulin receptor function in the adipocyte. Ann N Y Acad Sci 1986; 488:406-18. [PMID: 3555257 DOI: 10.1111/j.1749-6632.1986.tb46574.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
McDONALD JAYM, PERSHADSINGH HARRIHARA, COLCA JERRY. The Role of Calcium and Calmodulin in Insulin Receptor Function in the Adipocyte. Ann N Y Acad Sci 1986. [DOI: 10.1111/j.1749-6632.1986.tb54420.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Graves CB, Gale RD, Laurino JP, McDonald JM. The insulin receptor and calmodulin. Calmodulin enhances insulin-mediated receptor kinase activity and insulin stimulates phosphorylation of calmodulin. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)67542-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
|
21
|
Froehlich JP, Heller PF. Transient-state kinetics of the ADP-insensitive phosphoenzyme in sarcoplasmic reticulum: implications for transient-state calcium translocation. Biochemistry 1985; 24:126-36. [PMID: 3158340 DOI: 10.1021/bi00322a018] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The kinetics of formation of the ADP-sensitive (EP) and ADP-insensitive (E*P) phosphoenzyme intermediates of the CaATPase in sarcoplasmic reticulum (SR) were investigated by means of the quenched-flow technique. At 21 degrees C, addition of saturating ADP to SR vesicles phosphorylated for 116 ms with 10 microM ATP gave a triphasic pattern of dephosphorylation in which EP and E*P accounted for 33% and 60% of the total phosphoenzyme, respectively. Inorganic phosphate (Pi) release was less than stoichiometric with respect to E*P decay and was not increased by preincubation with Ca2+ ionophore. The fraction of E*P present after only 6 ms of phosphoenzyme formation was similar to that at 116 ms, indicating that isomerization of EP to E*P occurs very rapidly. Comparison of the time course of E*P formation with intravesicular Ca2+ accumulation measured by quenching with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid + ADP revealed that Ca2+ release on the inside of the vesicle was delayed with respect to E*P formation. Since Ca2+ should dissociate rapidly dissociation from the low-affinity transport sites, these results suggest that Ca2+ remains "occluded" after phosphoenzyme isomerization and that a subsequent slow transition controls the rate of Ca2+ release at the intravesicular membrane surface. Analysis of the forward and reverse rate constants for the EP to E*P transition gave an expected steady-state distribution of phosphoenzymes strongly favoring the ADP-insensitive form. In contrast, the observed ratio of EP to E*P was about 1:2. To account for this discrepancy, a mechanism is proposed in which stabilization of the ADP-sensitive phosphoenzyme is brought about by a conformational interaction between adjacent subunits in a dimer.
Collapse
|
22
|
Bulos BA, Thomas BJ, Shukla SP, Sacktor B. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP. Arch Biochem Biophys 1984; 234:382-93. [PMID: 6497378 DOI: 10.1016/0003-9861(84)90284-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Blowfly (Phormia regina) flight muscle mitochondria oxidized pyruvate ( + proline) in the presence of either ADP (coupled respiration) or carbonylcyanide-p-trifluoromethoxyphenylhydrazone (FCCP-uncoupled respiration). There was an absolute requirement for ADP (Km = 8.0 microM) when pyruvate oxidation was stimulated by FCCP in the presence of oligomycin. This requirement for ADP was limited to the oxidation of pyruvate; uncoupled alpha-glycerolphosphate oxidation proceeded maximally even in the absence of added ADP. Atractylate inhibited uncoupled pyruvate oxidation whether added before (greater than 99%) or after (95%) initiation of respiration with FCCP. In the presence of FCCP, oligomycin, and limiting concentrations of ADP (less than 110 microM), there was a shutoff in the uptake of oxygen. This inhibition of respiration was completely reversed by the addition of more ADP. Plots of net oxygen uptake as a function of the limiting ADP concentration were linear; the observed ADP/O ratio was 0.22 +/- 0.025. An ADP/O ratio of 0.2 was predicted if phosphorylation occurred only at the succinyl-CoA synthetase step of the tricarboxylate cycle. Experiments performed in the presence of limiting concentrations of ADP, and designed to monitor changes in the mitochondrial content of ADP and ATP, demonstrated that the shutoff in oxygen uptake was not due to the presence of a high intramitochondrial concentration of ATP. Indeed, ATP, added to the medium prior to the addition of FCCP, inhibited uncoupled pyruvate oxidation; the apparent KI was 0.8 mM. These results are consistent with the hypothesis that it is the intramitochondrial ATP/ADP ratio that is one of the controlling factors in determining the rate of flux through the tricarboxylate cycle. Changes in the mitochondrial content of citrate, isocitrate, alpha-ketoglutarate, and malate during uncoupled pyruvate oxidation in the presence of a limiting concentration of ADP were consistent with the hypothesis that the mitochondrial NAD + -linked isocitric dehydrogenase is a major site for such control through the tricarboxylate cycle.
Collapse
|
23
|
Kulinskii VI, Kolpakova TV. Regulation of purified pig heart NAD-isocitrate dehydrogenase by calcium ions and cAMP-dependent protein kinase. Bull Exp Biol Med 1984. [DOI: 10.1007/bf01262467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Bulos BA, Thomas BJ, Sacktor B. Calcium inhibition of the NAD+-linked isocitrate dehydrogenase from blowfly flight muscle mitochondria. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90955-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Coty WA, Mc Conkey CL. A high-affinity calcium-stimulated ATPase activity in the hen oviduct shell gland. Arch Biochem Biophys 1982; 219:444-53. [PMID: 6219624 DOI: 10.1016/0003-9861(82)90176-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
26
|
Wakasugi H, Kimura T, Haase W, Kribben A, Kaufmann R, Schulz I. Calcium uptake into acini from rat pancreas: evidence for intracellular ATP-dependent calcium sequestration. J Membr Biol 1982; 65:205-20. [PMID: 6801263 DOI: 10.1007/bf01869964] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Intracellular ATP-dependent Ca2+-sequestration mechanisms were studied in isolated dispersed rat pancreatic acini following treatment with saponin or digitonin to disrupt their plasma membranes. In the presence of 45Ca2+ concentrations less than 10(-6) mol/liter, addition of 5 mmol/liter ATP caused a rapid increase in 45Ca2+ uptake exceeding the control by fivefold. ADP mimicked the ATP effect by 50 to 60%, whereas other nucleotides such as AMP-PNP, AMP-PCP, CTP, UTP, ITP, GTP, cAMP and cGMP did not. Maximal ATP-promoted Ca2+ uptake was obtained at 10(-5) mol/liter Ca2+. Inhibition of Ca2+ uptake by mitochondrial inhibitors was dependent on the Ca2+ concentration, indicating the presence of different Ca2+ storage systems. Whereas the apparent half-saturation constant found for mitochondrial Ca2+ uptake was approximately 4.5 X 10(-7) mol/liter, in the presence of antimycin and oligomycin (nonmitochondrial uptake) it was approximately 1.4 X 10(-8) mol/liter. In the absence of Mg2+ both ATP- and ADP-promoted Ca2+ uptake was nearly abolished. The Ca2+ ionophore and mersalyl blocked Ca2+ uptake, Electron microscopy showed electron-dense precipitates in the rough endoplasmic reticulum of saponin-treated cells in the presence of Ca2+, oxalate and ATP, which were absent in intact cells and in saponin-cells without ATP or pretreated with A23187. The data suggest the presence of mitochondrial and nonmitochondrial ATP-dependent C2+ storage systems in pancreatic acini. The latter is likely to be located in the rough endoplasmic reticulum.
Collapse
|
27
|
Mimura N, Asano A. Characterization and localization of actinogelin, a Ca2+ - sensitive actin accessory protein, in nonmuscle cells. J Cell Biol 1982; 93:899-909. [PMID: 6889601 PMCID: PMC2112147 DOI: 10.1083/jcb.93.3.899] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Actinogelin, which induces gelation of F-actin at Ca2+ concentrations below micromolar concentrations but not at higher concentrations, was isolated in the pure state from Ehrlich tumor cells. The protein consists of subunits of 112,000-115,000 daltons and under physiological conditions is present mostly as a dimer. Up to 1 mol of actinogelin (dimer) binds to 10-12 mol of actin monomer. The binding was slightly decreased by the presence of 50 microM Ca2+ and almost completely inhibited by 300 mM KCl. Antibodies against actinogelin giving a single precipitation line with Ehrlich cell extract and with pure actinogelin were raised in rabbits. Antibody preparations were purified before use in an affinity column containing purified actinogelin. In mouse embryo fibroblasts and 3T3 cells, staining of actin bundles by the antiactinogelin antibody usually was discontinuous or gave a striated appearance. Most of the crossing points of the actin bundles were intensively stained. In epithelial cells from mouse small intestine, actinogelin was distributed throughout the cell, with the exception of the microvilli, which were devoid of staining. In mouse peritoneal cells, the antibody staining patterns were similar to those of tetramethylrhodamine isothiocyanate-labeled heavy meromyosin, but the former usually were sharper than the latter. Intracellular localization of actinogelin was drastically altered by cytochalasin D treatment at 10 microgram/ml. We conclude that actinogelin is present in a wide variety of cell types and discuss the possible participation of actinogelin in the Ca2+-dependent regulation of microfilament distribution.
Collapse
|
28
|
|
29
|
Aogaichi T, Evans J, Gabriel J, Plaut GW. The effects of calcium and lanthanide ions on the activity of bovine heart nicotinamide adenine dinucleotide-specific isocitrate dehydrogenase. Arch Biochem Biophys 1980; 204:350-6. [PMID: 6775600 DOI: 10.1016/0003-9861(80)90043-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Wikman-Coffelt J, Muhlrad A. Protein binding of calcium using 45Ca with EGTA buffers and myosin as a model. FEBS Lett 1980; 114:39-44. [PMID: 6769711 DOI: 10.1016/0014-5793(80)80856-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Srivastava S, Wikman-Coffelt J. An investigation into the role of SH1 and SH2 groups of myosin in calcium binding and tension generation. Biochem Biophys Res Commun 1980; 92:1383-8. [PMID: 6445194 DOI: 10.1016/0006-291x(80)90439-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
32
|
Wikman-Coffelt J. Properties of the non-specific calcium-binding sites of rabbit skeletal-muscle myosin. Biochem J 1980; 185:265-8. [PMID: 6769430 PMCID: PMC1161294 DOI: 10.1042/bj1850265] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The non-specific Ca2+-binding sites of skeletal-muscle myosin are located on the light chains; with the dissociation of light chains there is a corresponding decrease in the number of Ca2+-binding sites on light-chain-deficient myosin. The released light chains have a decreased binding affinity. Myosin heavy chains indirectly influence the Ca2+-binding properties of light chains by increasing the affinity of light chains for bivalent cations; this influence varies with pH. Because of light-chain dissociation at low Ca2+ and/or Mg2+ concentrations, anomalies may exist when analyses of non-specific Ca2+-binding properties of myosin are assessed by dialysis equilibrium.
Collapse
|