1
|
Choi HP, Juarez S, Ciordia S, Fernandez M, Bargiela R, Albar JP, Mazumdar V, Anton BP, Kasif S, Ferrer M, Steffen M. Biochemical Characterization of Hypothetical Proteins from Helicobacter pylori. PLoS One 2013; 8:e66605. [PMID: 23825549 PMCID: PMC3688963 DOI: 10.1371/journal.pone.0066605] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/08/2013] [Indexed: 12/16/2022] Open
Abstract
The functional characterization of Open Reading Frames (ORFs) from sequenced genomes remains a bottleneck in our effort to understand microbial biology. In particular, the functional characterization of proteins with only remote sequence homology to known proteins can be challenging, as there may be few clues to guide initial experiments. Affinity enrichment of proteins from cell lysates, and a global perspective of protein function as provided by COMBREX, affords an approach to this problem. We present here the biochemical analysis of six proteins from Helicobacter pylori ATCC 26695, a focus organism in COMBREX. Initial hypotheses were based upon affinity capture of proteins from total cellular lysate using derivatized nano-particles, and subsequent identification by mass spectrometry. Candidate genes encoding these proteins were cloned and expressed in Escherichia coli, and the recombinant proteins were purified and characterized biochemically and their biochemical parameters compared with the native ones. These proteins include a guanosine triphosphate (GTP) cyclohydrolase (HP0959), an ATPase (HP1079), an adenosine deaminase (HP0267), a phosphodiesterase (HP1042), an aminopeptidase (HP1037), and new substrates were characterized for a peptidoglycan deacetylase (HP0310). Generally, characterized enzymes were active at acidic to neutral pH (4.0–7.5) with temperature optima ranging from 35 to 55°C, although some exhibited outstanding characteristics.
Collapse
Affiliation(s)
- Han-Pil Choi
- Dept of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Silvia Juarez
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, Darwin 3, Madrid, Spain
| | - Sergio Ciordia
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, Darwin 3, Madrid, Spain
| | - Marisol Fernandez
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, Darwin 3, Madrid, Spain
| | - Rafael Bargiela
- Spanish National Research Council (CSIC), Institute of Catalysis, Madrid, Spain
| | - Juan P. Albar
- Proteomic Facility, CNB-National Centre for Biotechnology, CSIC, Darwin 3, Madrid, Spain
| | - Varun Mazumdar
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Brian P. Anton
- New England Biolabs, Ipswich, Massachusetts, United States of America
| | - Simon Kasif
- Dept of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Bioinformatics Program, Boston University, Boston, Massachusetts, United States of America
| | - Manuel Ferrer
- Spanish National Research Council (CSIC), Institute of Catalysis, Madrid, Spain
- * E-mail: (MS); (MF)
| | - Martin Steffen
- Dept of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Dept of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (MS); (MF)
| |
Collapse
|
2
|
Balestri F, Moschini R, Cappiello M, Del-Corso A, Mura U. Impact on enzyme activity as a new quality index of wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 117:76-84. [PMID: 23353880 DOI: 10.1016/j.jenvman.2012.12.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/21/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
The aim of this study was to define a new indicator for the quality of wastewaters that are released into the environment. A quality index is proposed for wastewater samples in terms of the inertness of wastewater samples toward enzyme activity. This involves taking advantage of the sensitivity of enzymes to pollutants that may be present in the waste samples. The effect of wastewater samples on the rate of a number of different enzyme-catalyzed reactions was measured, and the results for all the selected enzymes were analyzed in an integrated fashion (multi-enzymatic sensor). This approach enabled us to define an overall quality index, the "Impact on Enzyme Function" (IEF-index), which is composed of three indicators: i) the Synoptic parameter, related to the average effect of the waste sample on each component of the enzymatic sensor; ii) the Peak parameter, related to the maximum effect observed among all the effects exerted by the sample on the sensor components; and, iii) the Interference parameter, related to the number of sensor components that are affected less than a fixed threshold value. A number of water based samples including public potable tap water, fluids from urban sewage systems, wastewater disposal from leather, paper and dye industries were analyzed and the IEF-index was then determined. Although the IEF-index cannot discriminate between different types of wastewater samples, it could be a useful parameter in monitoring the improvement of the quality of a specific sample. However, by analyzing an adequate number of waste samples of the same type, even from different local contexts, the profile of the impact of each component of the multi-enzymatic sensor could be typical for specific types of waste. The IEF-index is proposed as a supplementary qualification score for wastewaters, in addition to the certification of the waste's conformity to legal requirements.
Collapse
Affiliation(s)
- Francesco Balestri
- Department of Biology, Biochemistry Unit, University of Pisa, Via S. Zeno, 51, 56127 Pisa, Italy
| | | | | | | | | |
Collapse
|
3
|
Zhang J, Takeda M. Molecular characterization of MbADGF, a novel member of the adenosine deaminase-related growth factor in the cabbage armyworm, Mamestra brassicae: the functional roles in the midgut cell proliferation. INSECT MOLECULAR BIOLOGY 2007; 16:351-60. [PMID: 17439545 DOI: 10.1111/j.1365-2583.2007.00732.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
To clarify the functional mechanism of the adenosine deaminase-related growth factor (ADGF) particularly in the regulation of insect development, the cDNA encoding a homologue of ADGF proteins was cloned from the cabbage armyworm, Mamestra brassicae, named MbADGF. The purified MbADGF recombinant protein stimulated cell proliferation in a dose-dependent manner of SES-MaBr-4 and NIAS-MaBr-93 cell lines that were derived from fat bodies and haemocytes of M. brassicae. The adenosine deaminase activity of MbADGF was detected using adenosine and 2'-deoxyadenosine as substrates. Northern analysis demonstrated that during the larval development the level of MbADGF in the midgut increased. In situ hybridization showed that MbADGF mRNA was expressed in midgut goblet cells and in the apical cytoplasm of columnar cells, which suggests that MbADGF protein may execute its adenosine deaminase activity at the apical cytoplasm of columnar cells to convert adenosine into inosine.
Collapse
Affiliation(s)
- J Zhang
- Division of Biofunctional Science, Graduate School of Science and Technology, Kobe University, Nada, Kobe, Japan.
| | | |
Collapse
|
4
|
Zurovec M, Dolezal T, Gazi M, Pavlova E, Bryant PJ. Adenosine deaminase-related growth factors stimulate cell proliferation in Drosophila by depleting extracellular adenosine. Proc Natl Acad Sci U S A 2002; 99:4403-8. [PMID: 11904370 PMCID: PMC123660 DOI: 10.1073/pnas.062059699] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe a protein family in Drosophila containing six adenosine deaminase-related growth factors (ADGFs), which are homologous to a mitogenic growth factor discovered in conditioned medium from cells of a different fly species, Sarcophaga. Closely related proteins have been identified in other animals, and a human homolog is implicated in the genetic disease Cat-Eye Syndrome. The two most abundantly expressed ADGFs in Drosophila larvae are ADGF-A, which is strongly expressed in the gut and lymph glands, and ADGF-D, which is mainly expressed in the fat body and brain. Recombinant ADGF-A and ADGF-D are active adenosine deaminases (ADAs), and they cause polarization and serum-independent proliferation of imaginal disk and embryonic cells in vitro. The enzymatic activity of these proteins is required for their mitogenic function, making them unique among growth factors. A culture medium prepared without adenosine, or depleted of adenosine by using bovine ADA, also stimulates proliferation of imaginal disk cells, and addition of adenosine to this medium inhibits proliferation. Thus ADGFs secreted in vivo may control tissue growth by modulating the level of extracellular adenosine.
Collapse
Affiliation(s)
- Michal Zurovec
- Developmental Biology Center, University of California, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
5
|
Tritsch D, Jung PM, Burger A, Biellmann JF. 3'-Beta-ethynyl and 2'-deoxy-3'-beta-ethynyl adenosines: first 3'-beta-branched-adenosines substrates of adenosine deaminase. Bioorg Med Chem Lett 2000; 10:139-41. [PMID: 10673097 DOI: 10.1016/s0960-894x(99)00639-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The 3'-C-branched-adenosine and 2'-deoxyadenosine analogues 1-7 were tested as substrate of adenosine deaminase. The 9-(3'-C-ethynyl-beta-D-ribo-pentofuranosyl)adenine 1 and its 2'-deoxy analogue 7 were deaminated by the enzyme while the vinyl and ethyl derivatives 2 and 3 were not. The 9-(3'-C-branched-beta-D-xylo-pentofuranosyl)adenines 4-6 were deaminated by the deaminase.
Collapse
Affiliation(s)
- D Tritsch
- Laboratoire de Chimie Organique Biologique UMR 7509 du CNRS, Université Louis Pasteur, Faculté de Chimie, Strasbourg, France.
| | | | | | | |
Collapse
|
6
|
Groziak MP, Huan ZW, Ding H, Meng Z, Stevens WC, Robinson PD. Effect of a chemical modification on the hydrated adenosine intermediate produced by adenosine deaminase and a model reaction for a potential mechanism of action of 5-aminoimidazole ribonucleotide carboxylase. J Med Chem 1997; 40:3336-45. [PMID: 9341908 DOI: 10.1021/jm970301s] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Using the hydrated adenosine intermediate (6R)-6-amino-1, 6-dihydro-6-hydroxy-9-(beta-D-ribofuranosyl)purine (2) produced by adenosine deaminase (ADA, EC 3.5.4.4) as a starting point, the active site probe and inhibitor platform 5-(formylamino)imidazole riboside (FAIRs, 4) was designed by removal of the-C6(OH)(NH2)-molecular fragment of 2 generated by the early events of the enzyme-catalyzed hydrolysis. FAIRs was synthesized directly from the sodium salt of 5-amino-1-(beta-D-ribofuranosyl)imidazole-4-carboxylic acid (CAIR) along a reaction sequence involving a tandem N-formylation/decarboxylation that may have a mechanistic connection to the Escherichia coli purE-catalyzed constitutional isomerization of N5-CAIR to CAIR. The physical and spectral properties of FAIRs were elucidated, its X-ray crystal and NMR solution structures were determined, and its interaction with ADA was investigated. Crystalline FAIRs exists solely as the Z-formamide rotamer and exhibits many of the same intramolecular hydrogen bonding events known to contribute to the association of Ado to ADA. In water and various organic solvents, however, FAIRs exists as NMR-distinct, slowly interconverting Z and E rotamers. This truncated enzymatic tetrahedral intermediate analog was determined to be a competitive inhibitor of ADA with an apparent Ki binding constant of 40 microM, a value quite close to that (33 microM) of the natural substrate's K(m). The actual species selected for binding by ADA, though, is likely the minor hydroxyimino prototropic form of Z-FAIRs possessing a far lower true Ki value. As the structural features of FAIRs appear well-suited to support its use as a template for constructing active site probes of both ADA and AIR carboxylases, a variety of carbohydrate-protected versions of FAIRs suitable for facile aglycon elaborations were synthesized. The N3-alkylation, N3-borane complexation, and C4-iodination of some of these were investigated in order to assess physicochemical properties that may assist in the elucidation of mechanisms for the AIR carboxylases. The survey of these properties taken together with a reasonable mechanism for the model CAIRs-->FAIRs synthetic transformation is interpreted to support a mechanism for the purE-catalyzed N5-CAIR-->CAIR biosynthetic one that involves a carboxylative sp3-rehybridization of the imidazole C4 atom rather than one possessing a dipole-stabilized C4 sp2 carbanionic intermediate.
Collapse
Affiliation(s)
- M P Groziak
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale 62901-4409, USA
| | | | | | | | | | | |
Collapse
|
7
|
Thakkar JK, Janero DR, Yarwood C, Sharif H, Hreniuk D. Isolation and characterization of AMP deaminase from mammalian (rabbit) myocardium. Biochem J 1993; 290 ( Pt 2):335-41. [PMID: 8452518 PMCID: PMC1132277 DOI: 10.1042/bj2900335] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AMP deaminase (AMP aminohydrolase, EC 3.5.4.6) is a ubiquitous enzyme in eukaryotes, which may play a role in ATP catabolism during myocardial ischaemia. We report isolation of AMP deaminase from rabbit myocardium with a 19% recovery and a 650-fold enrichment, using a newly devised protocol involving sequential cation-exchange, gel-permeation and affinity chromatographies. The cardiac AMP deaminase preparation described was electrophoretically and chromatographically homogeneous and contained one unique N-terminal residue (leucine). The isolated enzyme was sensitive to various cations (K+, Mg2+, Ca2+). The pH optimum of purified cardiac AMP deaminase was 6.8, its pI was 6.5, and it displayed substrate-specificity toward 5'-AMP. The subunit molecular mass of rabbit heart AMP deaminase on SDS/PAGE (81 kDa) and the holoenzyme molecular mass as estimated by non-denaturing size-exclusion h.p.l.c. (330 kDa) indicated that the native enzyme was a tetramer. Cardiac AMP deaminase displayed a sigmoidal substrate-saturation curve in the presence of 100 mM KCl. Apparent Michaelis constants were a Km of 5.8 mM AMP and a Vmax. of 11.1 mumol/min per mg of protein. ATP and ADP were positive allosteric effectors of cardiac AMP deaminase: the apparent Km was decreased to 1.7 mM by 1.0 mM ATP. The enzyme was inhibited by GTP, coformycin, coformycin 5'-phosphate, palmitoyl-CoA, inorganic phosphate compounds, and the metal chelator o-phenanthroline. No inhibition either by product nucleotide (IMP) or by nicotinamide nucleotides was detected when these agents were examined at concentrations up to 2.5 mM. We conclude that this enzyme preparation offers a means by which the kinetic mechanism and regulation of mammalian cardiac AMP deaminase may be directly investigated.
Collapse
Affiliation(s)
- J K Thakkar
- Research Department, CIBA-GEIGY Corporation, Summit, NJ 07901
| | | | | | | | | |
Collapse
|
8
|
Cercignani G, Allegrini S. On the validity of continuous spectrophotometric assays for adenosine deaminase activity: a critical reappraisal. Anal Biochem 1991; 192:312-5. [PMID: 2035831 DOI: 10.1016/0003-2697(91)90541-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kinetic investigations on adenosine deaminase from calf intestinal mucosa by spectrophotometric monitoring of the reaction at 264, 270, or 228 nm show that this method does not produce artifactual inhibition by substrate excess up to 0.7 mM concentration, when either adenosine or 2'-deoxyadenosine are employed with calf adenosine deaminase. The evaluation of kinetic parameters for this system was carried out both by initial rate measurements and by numerical differentiation of time progress curves according to a recently published method (S. C. Koerber and A. L. Fink, 1987, Anal. Biochem. 165, 75-87). The following results were obtained by the latter method at pH 7.0 and 30 degrees C: for the conversion of adenosine to inosine, kcat = 251 +/- 15 s-1, KMs = 29.7 +/- 2.8 microM, KMp = 613 +/- 62 microM; for the conversion of 2'-deoxyadenosine to 2'-deoxyinosine, kcat = 283 +/- 17 s-1, KMs = 22.4 +/- 2.2 microM, KMp = 331 +/- 35 microM. At 285 nm, a slight negative deviation from Beer's law was observed for adenosine at concentrations higher than 0.9 mM. No deviation was found for inosine up to 2.0 mM at the same wavelength.
Collapse
Affiliation(s)
- G Cercignani
- Department of Physiology and Biochemistry, University of Pisa, Italy
| | | |
Collapse
|
9
|
Abstract
Optimal monitor wavelengths and differential millimolar extinction coefficients (m delta epsilon) for rate determination of reactions catalyzed by adenosine deaminases on several substrates have been investigated as a function of pH in the range from 6.5 to 12. The values found are in some cases at variance with those quoted in the biochemical literature. The effect of pH on m delta epsilon values is shown to be clearly related to acid-base properties of product and/or substrate in the reaction. Experimental data are in most cases used to derive analytical functions describing the pH dependence of m delta epsilon. For the conversion of adenosine to inosine at pH 6.5, the following values of m delta epsilon +/- SE were obtained: at 263 nm, 8.27 +/- 0.02; at 264 nm, 8.36 +/- 0.02; at 265 nm, 8.27 +/- 0.03. These represent absolute maximal values as a function of pH.
Collapse
Affiliation(s)
- G Cercignani
- Department of Physiology and Biochemistry, University of Pisa, Italy
| |
Collapse
|
10
|
Baggott JE, Vaughn WH, Hudson BB. Inhibition of 5-aminoimidazole-4-carboxamide ribotide transformylase, adenosine deaminase and 5'-adenylate deaminase by polyglutamates of methotrexate and oxidized folates and by 5-aminoimidazole-4-carboxamide riboside and ribotide. Biochem J 1986; 236:193-200. [PMID: 2431676 PMCID: PMC1146805 DOI: 10.1042/bj2360193] [Citation(s) in RCA: 169] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the use of a continuous spectrophotometric assay and initial rates determined by the method of Waley [Biochem. J. (1981) 193, 1009-1012] methotrexate was found to be a non-competitive inhibitor, with Ki(intercept) = 72 microM and Ki(slope) = 41 microM, of 5-aminoimidazole-4-carboxamide ribotide transformylase, whereas a polyglutamate of methotrexate containing three gamma-linked glutamate residues was a competitive inhibitor, with Ki = 3.15 microM. Pentaglutamates of folic acid and 10-formylfolic acid were also competitive inhibitors of the transformylase, with Ki values of 0.088 and 1.37 microM respectively. Unexpectedly, the pentaglutamate of 10-formyldihydrofolic acid was a good substrate for the transformylase, with a Km of 0.51 microM and a relative Vmax. of 0.72, which compared favourably with a Km of 0.23 microM and relative Vmax. of 1.0 for the tetrahydro analogue. An analysis of the progress curve of the transformylase-catalysed reaction with the above dihydro coenzyme revealed that the pentaglutamate of dihydrofolic acid was a competitive product inhibitor, with Ki = 0.14 microM. The continuous spectrophotometric assay for adenosine deaminase based on change in the absorbance at 265 nm was shown to be valid with adenosine concentrations above 100 microM, which contradicts a previous report [Murphy, Baker, Behling & Turner (1982) Anal. Biochem. 122, 328-337] that this assay was invalid above this concentration. With the spectrophotometric assay, 5-aminoimidazole-4-carboxamide riboside was found to be a competitive inhibitor of adenosine deaminase, with (Ki = 362 microM), whereas the ribotide was a competitive inhibitor of 5'-adenylate deaminase, with Ki = 1.01 mM. Methotrexate treatment of susceptible cells results in (1) its conversion into polyglutamates, (2) the accumulation of oxidized folate polyglutamates, and (3) the accumulation of 5-aminoimidazole-4-carboxamide riboside and ribotide. The above metabolic events may be integral elements producing the cytotoxic effect of this drug by (1) producing tighter binding of methotrexate to folate-dependent enzymes, (2) producing inhibitors of folate-dependent enzymes from their tetrahydrofolate coenzymes, and (3) trapping toxic amounts of adenine nucleosides and nucleotides as a result of inhibition of adenosine deaminase and 5'-adenylate deaminase respectively.
Collapse
|
11
|
Tritsch GL. Validity of the continuous spectrophotometric assay of Kalckar for adenosine deaminase activity. Anal Biochem 1983; 129:207-9. [PMID: 6859524 DOI: 10.1016/0003-2697(83)90070-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Both adenosine and inosine obey Beer's law to 1.0 mM at 265 nm and pH 7.4 at 25 degrees C. Murphy et al. (1) claimed serious deviation from Beer's law above 200 microM for both substances, and concluded that the assay of adenosine deaminase activity based on recording spectrophotometric change at 265 nm as originally suggested by Kalckar produces anomalous results. The data herein presented show that this is not so, and that the large number of published studies of adenosine deaminase activity assayed by this method are indeed valid and should not be dismissed as artifactual as suggested by Murphy et al.
Collapse
|