1
|
Tang HYH, Shin DS, Hura GL, Yang Y, Hu X, Lightstone FC, McGee MD, Padgett HS, Yannone SM, Tainer JA. Structural Control of Nonnative Ligand Binding in Engineered Mutants of Phosphoenolpyruvate Carboxykinase. Biochemistry 2018; 57:6688-6700. [PMID: 30376300 PMCID: PMC6642699 DOI: 10.1021/acs.biochem.8b00963] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein engineering to alter recognition underlying ligand binding and activity has enormous potential. Here, ligand binding for Escherichia coli phosphoenolpyruvate carboxykinase (PEPCK), which converts oxaloacetate into CO2 and phosphoenolpyruvate as the first committed step in gluconeogenesis, was engineered to accommodate alternative ligands as an exemplary system with structural information. From our identification of bicarbonate binding in the PEPCK active site at the supposed CO2 binding site, we probed binding of nonnative ligands with three oxygen atoms arranged to resemble the bicarbonate geometry. Crystal structures of PEPCK and point mutants with bound nonnative ligands thiosulfate and methanesulfonate along with strained ATP and reoriented oxaloacetate intermediates and unexpected bicarbonate were determined and analyzed. The mutations successfully altered the bound ligand position and orientation and its specificity: mutated PEPCKs bound either thiosulfate or methanesulfonate but never both. Computational calculations predicted a methanesulfonate binding mutant and revealed that release of the active site ordered solvent exerts a strong influence on ligand binding. Besides nonnative ligand binding, one mutant altered the Mn2+ coordination sphere: instead of the canonical octahedral ligand arrangement, the mutant in question had an only five-coordinate arrangement. From this work, critical features of ligand binding, position, and metal ion cofactor geometry required for all downstream events can be engineered with small numbers of mutations to provide insights into fundamental underpinnings of protein-ligand recognition. Through structural and computational knowledge, the combination of designed and random mutations aids in the robust design of predetermined changes to ligand binding and activity to engineer protein function.
Collapse
Affiliation(s)
- Henry Y. H. Tang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David S. Shin
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Greg L. Hura
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Biochemistry and Chemistry, University of California, Santa Cruz, California 95064, United States
| | - Yue Yang
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Xiaoyu Hu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Felice C. Lightstone
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | | | - Hal S. Padgett
- Novici Biotech LLC, Vacaville, California 95688, United States
| | - Steven M. Yannone
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John A. Tainer
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
2
|
Machová I, Snášel J, Dostál J, Brynda J, Fanfrlík J, Singh M, Tarábek J, Vaněk O, Bednárová L, Pichová I. Structural and functional studies of phosphoenolpyruvate carboxykinase from Mycobacterium tuberculosis. PLoS One 2015; 10:e0120682. [PMID: 25798914 PMCID: PMC4370629 DOI: 10.1371/journal.pone.0120682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 02/05/2015] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis, the second leading infectious disease killer after HIV, remains a top public health priority. The causative agent of tuberculosis, Mycobacterium tuberculosis (Mtb), which can cause both acute and clinically latent infections, reprograms metabolism in response to the host niche. Phosphoenolpyruvate carboxykinase (Pck) is the enzyme at the center of the phosphoenolpyruvate-pyruvate-oxaloacetate node, which is involved in regulating the carbon flow distribution to catabolism, anabolism, or respiration in different states of Mtb infection. Under standard growth conditions, Mtb Pck is associated with gluconeogenesis and catalyzes the metal-dependent formation of phosphoenolpyruvate. In non-replicating Mtb, Pck can catalyze anaplerotic biosynthesis of oxaloacetate. Here, we present insights into the regulation of Mtb Pck activity by divalent cations. Through analysis of the X-ray structure of Pck-GDP and Pck-GDP-Mn2+ complexes, mutational analysis of the GDP binding site, and quantum mechanical (QM)-based analysis, we explored the structural determinants of efficient Mtb Pck catalysis. We demonstrate that Mtb Pck requires presence of Mn2+ and Mg2+ cations for efficient catalysis of gluconeogenic and anaplerotic reactions. The anaplerotic reaction, which preferably functions in reducing conditions that are characteristic for slowed or stopped Mtb replication, is also effectively activated by Fe2+ in the presence of Mn2+ or Mg2+ cations. In contrast, simultaneous presence of Fe2+ and Mn2+ or Mg2+ inhibits the gluconeogenic reaction. These results suggest that inorganic ions can contribute to regulation of central carbon metabolism by influencing the activity of Pck. Furthermore, the X-ray structure determination, biochemical characterization, and QM analysis of Pck mutants confirmed the important role of the Phe triad for proper binding of the GDP-Mn2+ complex in the nucleotide binding site and efficient catalysis of the anaplerotic reaction.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Mahavir Singh
- LIONEX diagnostics & Therapeutics, Braunschweig, Germany
| | - Ján Tarábek
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Sciences, Charles University in Prague, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
3
|
Martín M, Rius SP, Podestá FE. Two phosphoenolpyruvate carboxykinases coexist in the Crassulacean Acid Metabolism plant Ananas comosus. Isolation and characterization of the smaller 65 kDa form. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:646-653. [PMID: 21398135 DOI: 10.1016/j.plaphy.2011.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 02/17/2011] [Indexed: 05/30/2023]
Abstract
Two phosphoenolpyruvate carboxykinase (PEPCK, EC 4.1.1.49) isoforms of 74 and 65 kDa were found to coexist in vivo in pineapple leaves, a constitutive Crassulacean Acid Metabolism plant. The 65 kDa form was not the result of proteolytic cleavage of the larger form since extraction methods reported to prevent PEPCK proteolysis in other plant tissues failed to yield a single immunoreactive PEPCK polypeptide in leaf extracts. In this work, the smaller form of 65 kDa was purified to homogeneity and physically and kinetically characterized and showed parameters compatible with a fully active enzyme. The specific activity was nearly twice higher for decarboxylation of oxaloacetate when compared to carboxylation of phosphoenolpyruvate. Kinetic parameters fell within the range of those estimated for other plant PEPCKs. Its activity was affected by several metabolites, as shown by inhibition by 3-phosphoglycerate, citrate, malate, fructose-1,6-bisphosphate, l-asparagine and activation of the decarboxylating activity by succinate. A break in the Arrhenius plot at about 30°C indicates that PEPCK structure is responsive to changes in temperature. The results indicate that pineapple leaves contain two PEPCK forms. The biochemical characterization of the smaller isoform performed in this work suggests that it could participate in both carbon and nitrogen metabolism in vivo by acting as a decarboxylase.
Collapse
Affiliation(s)
- Mariana Martín
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
| | | | | |
Collapse
|
4
|
Barbin L, Eisele F, Santt O, Wolf DH. The Cdc48-Ufd1-Npl4 complex is central in ubiquitin-proteasome triggered catabolite degradation of fructose-1,6-bisphosphatase. Biochem Biophys Res Commun 2010; 394:335-41. [PMID: 20206597 DOI: 10.1016/j.bbrc.2010.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
Abstract
The switch from gluconeogenesis to glycolysis in yeast has been shown to require ubiquitin-proteasome dependent elimination of the key enzyme fructose-1,6-bisphosphatase (FBPase). Prior to proteasomal degradation, polyubiquitination of the enzyme occurs via the ubiquitin-conjugating enzymes Ubc1, Ubc4, Ubc5 and Ubc8 in conjunction with a novel multi-subunit ubiquitin ligase, the Gid complex. As an additional machinery required for the catabolite degradation process, we identified the trimeric Cdc48(Ufd1-Npl4) complex and the ubiquitin receptors Dsk2 and Rad23. We show that this machinery acts between polyubiquitination of FBPase and its degradation by the proteasome.
Collapse
Affiliation(s)
- Lise Barbin
- Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
5
|
Encinas MV, González-Nilo FD, Andreu JM, Alfonso C, Cardemil E. Urea-induced unfolding studies of free- and ligand-bound tetrameric ATP-dependent Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. Influence of quaternary structure on protein conformational stability. Int J Biochem Cell Biol 2002; 34:645-56. [PMID: 11943595 DOI: 10.1016/s1357-2725(01)00175-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
ATP-dependent phosphoenolpyruvate (PEP) carboxykinases are found in plants and microorganisms, and catalyse the reversible formation of PEP, ADP, and CO(2) from oxaloacetate plus ATP. These enzymes vary in quaternary structure although there is significant sequence identity among the proteins isolated from different sources. To help understand the influence of quaternary structure in protein stability, the urea-induced unfolding of free- and substrate-bound tetrameric Saccharomyces cerevisiae PEP carboxykinase is described and compared with the unfolding characteristics of the monomeric Escherichia coli enzyme [Eur. J. Biochem. 255 (1998) 439]. The urea-induced denaturation of S. cerevisiae PEP carboxykinase was studied by monitoring the enzyme activity, intrinsic protein fluorescence, circular dichroism (CD) spectra, and 1-anilino-8-naphthalenesulfonate (ANS) binding. The unfolding profiles were multi-steps, and formation of hydrophobic structures were detected. The data indicate that unfolding and dissociation of the enzyme tetramer are simultaneous events. Ligand binding, most notably PEP in the presence of MnCl(2), conferred a marked protection against urea-induced denaturation. A similar protection effect was found when N-iodoacetyl-N'-(5-sulfo-1-napthyl)ethylene diamine (1,5-I-AEDANS) was covalently bound at Cys(365), within the active site region. Refolding experiments indicated that total recovery of tertiary structure was only obtained from samples previously unfolded to less than 30%. In the presence of substrates, complete refolding was achieved from samples originally denatured up to 50%. The unfolding behaviour of S. cerevisiae PEP carboxykinase was found to be similar to that of E. coli PEP carboxykinase, however all steps take place at lower urea concentrations. These findings show that, at least for monomeric and tetrameric ATP-dependent PEP carboxykinases, quaternary structure does not contribute to protein conformational stability.
Collapse
Affiliation(s)
- M Victoria Encinas
- Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, 33, Santiago, Chile
| | | | | | | | | |
Collapse
|
6
|
Trapani S, Linss J, Goldenberg S, Fischer H, Craievich AF, Oliva G. Crystal structure of the dimeric phosphoenolpyruvate carboxykinase (PEPCK) from Trypanosoma cruzi at 2 A resolution. J Mol Biol 2001; 313:1059-72. [PMID: 11700062 DOI: 10.1006/jmbi.2001.5093] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
ATP-dependent phosphoenolpyruvate carboxykinase (PEPCK) (ATP: oxaloacetate carboxylyase (transphosphorylating), EC 4.1.1.49) is a key enzyme involved in the catabolism of glucose and amino acids in the parasite Trypanosoma cruzi, the causative agent of Chagas' disease. Due to the significant differences in the amino acid sequence and substrate specificity of the human enzyme (PEPCK (GTP-dependent), EC 4.1.1.32), the parasite enzyme has been considered a good target for the development of new anti-chagasic drugs. We have solved the crystal structure of the recombinant PEPCK of T. cruzi up to 2.0 A resolution, characterised the dimeric organisation of the enzyme by solution small angle X-ray scattering (SAXS) and compared the enzyme structure with the known crystal structure of the monomeric PEPCK from Escherichia coli. The dimeric structure possesses 2-fold symmetry, with each monomer sharing a high degree of structural similarity with the monomeric structure of the E. coli PEPCK. Each monomer folds into two complex mixed alpha/beta domains, with the active site located in a deep cleft between the domains. The two active sites in the dimer are far apart from each other, in an arrangement that seems to permit an independent access of the substrates to the two active sites. All residues of the E. coli PEPCK structure that had been found to interact with substrates and metal cofactors have been found conserved and in a substantially equivalent spatial disposition in the T. cruzi PEPCK structure. No substrate or metal ion was present in the crystal structure. A sulphate ion from the crystallisation medium has been found bound to the active site. Solution SAXS data suggest that, in solutions with lower sulphate concentration than that used for the crystallisation experiments, the actual enzyme conformation may be slightly different from its conformation in the crystal structure. This could be due to a conformational transition upon sulphate binding, similar to the ATP-induced transition observed in the E. coli PEPCK, or to crystal packing effects. The present structure of the T. cruzi PEPCK will provide a good basis for the modelling of new anti-chagasic drug leads.
Collapse
Affiliation(s)
- S Trapani
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos-SP, Brasil
| | | | | | | | | | | |
Collapse
|
7
|
Jabalquinto AM, Laivenieks M, Zeikus JG, Cardemil E. Characterization of the oxaloacetate decarboxylase and pyruvate kinase-like activities of Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinases. JOURNAL OF PROTEIN CHEMISTRY 1999; 18:659-64. [PMID: 10609641 DOI: 10.1023/a:1020602222808] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Two members of the ATP-dependent class of phosphoenolpyruvate carboxykinases (PEPCKs) (Saccharomyces cerevisiae and Anaerobiospirillum succiniciproducens) have been comparatively studied with regard to their oxaloacetate (OAA) decarboxylase and pyruvate kinase-like activities. The pyruvate kinase-like activities were dependent on the presence of Mn2+; at the same concentrations Mg2+ was not effective. These activities were synergistically activated by a combination of both metal ions. Vmax for these activities in A. succiniciproducens and S. cerevisiae PEPCKs was 0.13% and 1.2% that of the principal reaction, respectively. The OAA decarboxylase activity was nucleotide independent and, with decreasing order of effectiveness, these activities were supported by Mn2+ and Mg2+. AMP is an activator of these reactions. Vmax for the OAA decarboxylase activities in A. succiniciproducens and S. cerevisiae PEPCKs was 4% and 0.2% that of the PEP-forming reaction, respectively.
Collapse
Affiliation(s)
- A M Jabalquinto
- Departamento de Ciencias Químicas, Facultad de Química y Biología, Universidad de Santiago de Chile.
| | | | | | | |
Collapse
|
8
|
Chávez R, Krautwurst H, Cardemil E. Site-directed mutagenesis in basic amino acid residues of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. JOURNAL OF PROTEIN CHEMISTRY 1997; 16:233-6. [PMID: 9155094 DOI: 10.1023/a:1026335010370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mutant Arg76Gln and Lys290Gln Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases have been prepared and analyzed. No alteration in the apparent kinetic constants were detected for the Arg76Gln mutant enzyme, while the Lys290Gln mutant showed a 12-fold decrease in V(max)/K(m)ADP. These results indicate that Arg76 is not involved in CO2 binding, but support the hypothesis that the binding of this substrate induces a conformational change that protects the region around Arg76 from trypsin action [Herrera et al. (1993) J. Protein Chem. 12, 413-418]. These findings also indicate that Lys290, a highly reactive residue against pyrydoxal phosphate [Bazaes et al. (1995), FEBS Lett. 360, 207-210], does not perform an essential function for the enzyme activity.
Collapse
Affiliation(s)
- R Chávez
- Departamento de Ciencias Quimicas, Facultad de Quimica y Biologia, Universidad de Santiago de Chile
| | | | | |
Collapse
|
9
|
Matte A, Tari LW, Goldie H, Delbaere LT. Structure and mechanism of phosphoenolpyruvate carboxykinase. J Biol Chem 1997; 272:8105-8. [PMID: 9139042 DOI: 10.1074/jbc.272.13.8105] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- A Matte
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | | | | | | |
Collapse
|
10
|
Bazaes S, Montecinos L, Krautwurst H, Goldie H, Cardemil E, Jabalquinto AM. Identification of reactive conserved histidines in phosphoenolpyruvate carboxykinases from Escherichia coli and Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1337:166-74. [PMID: 9048893 DOI: 10.1016/s0167-4838(96)00155-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Escherichia coli and Saccharomyces cerevisiae phospho enol pyruvate (PEP) carboxykinases are inactivated by diethylpyrocarbonate (DEP). Inactivation follows pseudo-first-order kinetics and exhibits a second order rate constant of 0.8 M-1 s-1 for the bacterial enzyme and of 3.3 M-1 s-1 for the yeast carboxykinase. A mixture of ADP + PEP + MnCl2 protects against inactivation by DEP, suggesting that residues within the active site are being modified. After digestion of the modified proteins with trypsin, the labeled peptides were isolated by reverse-phase high-performance liquid chromatography and sequenced by Edman degradation. His-271 of E. coli carboxykinase and His-273 of the yeast enzyme were identified as the reactive amino-acid residues. The modified histidine residues occupy equivalent positions in these enzymes, and they are located in a highly conserved region of all ATP-dependent phospho enol pyruvate carboxykinases described so far.
Collapse
Affiliation(s)
- S Bazaes
- Departamento de Química, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
11
|
Vial M, Oelckers KB, Rojas M, Simpfendörfer RW. Purification, partial kinetic characterization and reactive sulfhydryl groups of the phosphoenolpyruvate carboxykinase from Perumytilus purpuratus adductor muscle. Comp Biochem Physiol B Biochem Mol Biol 1995. [DOI: 10.1016/0305-0491(95)00067-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Hunt M, Köhler P. Purification and characterization of phospho enol pyruvate carboxykinase from Trypanosoma brucei. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1249:15-22. [PMID: 7766679 DOI: 10.1016/0167-4838(95)00061-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
ATP-dependent phospho enol pyruvate carboxykinase (EC 4.1.1.49; PEPCK, ATP) was purified from glycosomes of cultured procyclic Trypanosoma brucei to electrophoretic homogeneity. The purified enzyme exhibited a mean specific activity of 83 units mg-1, as measured in the carboxylation direction at 30 degrees C. A similar activity was obtained for the decarboxylation reaction. The enzyme was shown to be a homodimer in solution with a subunit molecular mass of 59 kDa. Amino acid sequence analysis suggested that the PEPCK (ATP) is identical to the trypanosomal protein p60, the sequence of which was previously predicted from the corresponding nucleotide sequence by other investigators. The basic nature of the enzyme was indicated by a high isoelectric point (pH 8.9). The enzyme was found to be strictly dependent on adenosine nucleotides for activity, as well as on the presence of Mn2+. Mg2+ was found to be ineffective as activator of the trypanosomal enzyme, but a combination of subsaturating (< or = 300 microM) concentrations of Mn2+ and high concentrations of Mg2+ caused a synergistic effect on the carboxylation activity, indicating a dual cation requirement. Mn2+ is necessary to activate the enzyme and Mn2+ or Mg2+ most likely forms the cation-nucleotide complex as the active form of the substrate. Relatively high (5 mM) levels of ATP were required to produce a significant inhibition of the carboxylation reaction. Quinolinic acid, a structural analogue of oxaloacetate, completely inhibited the decarboxylation reaction at a 1 mM concentration. The apparent Michaelis constants of the enzyme were 490 microM for PEP, 37 microM for oxaloacetate, 40 microM for ADP, 10.3 microM for ATP, 970 microM for Mn2+ and 26 mM for HCO3-. Endogenous substrate concentrations were found to be 327 nmol PEP, 1486 nmol ADP, 4200 nmol ATP and 11.5 nmol Mn2+ (ml cell volume)-1. Our kinetic data suggest that under physiological conditions PEPCK (ATP) in T. brucei is bidirectional and that its activity is regulated primarily by mass action. The physiological relevance of the enzyme in procyclic T. brucei is discussed.
Collapse
Affiliation(s)
- M Hunt
- Institute of Parasitology, University of Zürich, Switzerland
| | | |
Collapse
|
13
|
Bazaes S, Goldie H, Cardemil E, Jabalquinto AM. Identification of reactive lysines in phosphoenolpyruvate carboxykinases from Escherichia coli and Saccharomyces cerevisiae. FEBS Lett 1995; 360:207-10. [PMID: 7875332 DOI: 10.1016/0014-5793(95)00107-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Escherichia coli and Saccharomyces cerevisiae phosphoenolpyruvate carboxykinases (PEPCKs), were inactivated by pyridoxal 5'-phosphate followed by reduction with sodium borohydride. Concomitantly with the inactivation, one pyridoxyl group was incorporated in each enzyme monomer. The modification and loss of activity was prevented in the presence of ADP plus Mn2+. After digestion of the modified protein with trypsin plus protease V-8, the labeled peptides were isolated by reverse-phase high-performance liquid chromatography and sequenced by gas-phase automatic Edman degradation. Lys286 of bacterial PEPCK and Lys289 of the yeast enzyme were identified as the reactive amino acid residues. The modified lysine residues are conserved in all ATP-dependent phosphoenolpyruvate carboxykinases described so far.
Collapse
Affiliation(s)
- S Bazaes
- Departamento de Quimica, Universidad Metropolitana de Ciencias de la Educación, Santiago, Chile
| | | | | | | |
Collapse
|
14
|
Herrera L, Encinas MV, Jabalquinto AM, Cardemil E. Limited proteolysis of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:413-8. [PMID: 8251061 DOI: 10.1007/bf01025041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Incubation of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase with trypsin under native conditions cases a time-dependent loss of activity and the production of protein fragments. Cleavage sites determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and sequence analyses identified protease-sensitive peptide bonds between amino acid residues at positions 9-10 and 76-77. Additional fragmentation sites were also detected in a region approximately 70-80 amino acids before the carboxyl end of the protein. These results suggest that the enzyme is formed by a central compact domain comprising more than two thirds of the whole protein structure. From proteolysis experiments carried out in the presence of substrates, it could be inferred that CO2 binding specifically protects position 76-77 from trypsin action. Intrinsic fluorescence measurements demonstrated that CO2 binding induces a protein conformational change, and a dissociation constant for the enzyme CO2 complex of 8.2 +/- 0.6 mM was determined.
Collapse
Affiliation(s)
- L Herrera
- Departamento de Quimica, Facultad de Ciencia, Universidad de Santiago de Chile, Santiago
| | | | | | | |
Collapse
|
15
|
Rojas MC, Encinas MV, Kemp RG, Latshaw SP, Cardemil E. Identification of reactive vicinal cysteines in Saccharomyces cerevisiae (ATP) and cytosolic rat liver (GTP) phospho enol pyruvate carboxykinases. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1164:143-51. [PMID: 8329445 DOI: 10.1016/0167-4838(93)90241-i] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Saccharomyces cerevisiae (ATP) and cytosolic rat liver (GTP) phospho enol pyruvate carboxykinases (EC 4.1.1.49/32) have been labeled with N-(1-pyrenyl)-iodoacetamide. Reagent incorporation was completely prevented by the presence of the respective nucleoside diphosphate plus MnCl2. Under appropriate conditions, 2 mol of reagent per mol of enzyme subunit were incorporated. The fluorescence spectra of the labeled proteins showed the pyrene excimer emission band. The pyrenyl-derivatized enzymes were digested with trypsin after carboxymethylation, and two labeled peptides were isolated for each carboxykinase upon reverse-phase high-performance liquid chromatography. Automated Edman degradation of the labeled peptides indicated that cysteines 364 and 457 (yeast enzyme), and cysteines 288 and 413 (rat enzyme) were labeled with the fluorescence SH-specific reagent. The relative reactivity of these residues was characterized. Labeling experiments utilizing the 5,5'-dithiobis(2-nitrobenzoate)-oxidized enzymes suggested that the reactive SH-groups occupy a vicinal position in the tertiary structure of the proteins, probably in the nucleotide-binding region.
Collapse
Affiliation(s)
- M C Rojas
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago
| | | | | | | | | |
Collapse
|
16
|
Jacob LR, Vollert H, Rose M, Entian KD, Bartunik LJ, Bartunik HD. Fast high-performance liquid chromatographic purification of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. J Chromatogr A 1992; 625:47-54. [PMID: 12126109 DOI: 10.1016/0021-9673(92)87220-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A procedure was established for the rapid isolation of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (PEPCK) from an overproducing strain. Overexpression was achieved by the transformation of yeast cells with the multicopy plasmid YEp352 harbouring the PEPCK structural gene. The enzyme was purified to homogeneity using first anion-exchange chromatography on Q-Sepharose followed by hydrophobic interaction chromatography on phenyl-Sepharose and gel filtration on Sephacryl S200. The purified phosphoenolpyruvate carboxykinase was further characterized with respect to the molecular mass, displaying an apparent molecular mass corresponding to a tetrameric form.
Collapse
Affiliation(s)
- L R Jacob
- Max Planck Society, Research Unit for Structural Molecular Biology, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
17
|
Cardemil E, Encinas MV, Jabalquinto AM. Reactive sulfhydryl groups in Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1040:71-6. [PMID: 2198945 DOI: 10.1016/0167-4838(90)90147-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) is inactivated by several thiol- and vicinal dithiol-specific reagents. Titration experiments of the enzyme with 5,5'-dithiobis(2-nitrobenzoate) (DTNB) show the presence of reactive monothiol and vicinal dithiol groups, whose modifications lead to enzyme inactivation. The enzyme is also inactivated by N-(1-pyrenyl)iodoacetamide (PyrIAM), with a binding stoichiometry of approx. 2 mol per mol of enzyme subunit. A high level of pyrene excimer fluorescence is detected on the labeled enzyme, thus implying the reaction of the reagent with two spatially close sulfhydryl groups in the protein. The carboxykinase is not completely inactivated by different vicinal dithiol-specific reagents, thus implying a catalytically non-essential character for these groups. From substrate protection experiments of the enzyme inactivation by DTNB, PyrIAM and vicinal dithiol-specific reagents, it is concluded that the loss of enzyme activity is caused by the modification of both thiol and vicinal dithiol groups in the substrate binding region.
Collapse
Affiliation(s)
- E Cardemil
- Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile
| | | | | |
Collapse
|
18
|
Burlini N, Morandi S, Pellegrini R, Tortora P, Guerritore A. Studies on the degradative mechanism of phosphoenolpyruvate carboxykinase from yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1014:153-61. [PMID: 2684277 DOI: 10.1016/0167-4889(89)90028-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Previous work carried out in our laboratory (Burlini, N., Lamponi S., Radrizzani, M., Monti, E. and Tortora P. (1987) Biochim. Biophys. Acta 930, 220-229) led to the immunological identification of a yeast 65-kDa phosphoprotein as a modified form of phosphoenolpyruvate carboxykinase; moreover the appearance of this phospho form was proven to be independent of cAMP, whereas the glucose-induced inactivation of the native enzyme is cAMP-dependent. Here, we report further investigations on the mechanism of the glucose-triggered degradation of the enzyme which led to the following results: (a) the aforementioned phospho form displayed a binding pattern to 5 AMP-Sepharose 4B quite similar to that of native enzyme, although it did not retain its oligomeric structure, nor was it catalytically active; (b) its phosphate content was of about two residues per monomer; (c) its isoelectric point was slightly higher than that of native enzyme, this shows that the enzyme undergoes additional modifications besides phosphorylation; (d) it represented about 4% of the native enzyme in glucose-depressed cells; (e) other forms immunologically cross-reactive with the native enzyme were also isolated, whose molecular mass was in the range of 60-62 kDa, and they are probable candidates as degradation products of the phospho form; (f) time courses of the native and phospho forms in the presence and the absence of glucose provided data consistent with a kinetic model involving a strong stimulation of the decay of both forms effected by the sugar; (g) in the mutant ABYS1 (Achstetter, T., Emter, O., Ehmann, C. and Wolf, D.H. (1984) J. Biol. Chem. 259, 13334-13343) which is devoid of the four major vacuolar proteinases, the decay pattern was essentially the same as in wild-type; (h) effectors lowering intracellular ATP also retarded the first step of enzyme degradation; this points to an ATP-dependence of this step. Based on these results we propose a degradation mechanism consisting of an initial cAMP- and ATP-dependent modification of the enzyme, followed by a cAMP-independent phosphorylation, which leads to the appearance of the aforementioned monomeric phospho form; this in turn seems to undergo limited proteolysis. These data strongly suggest the occurrence of an intermediate form arising from the native one and whose phosphorylation gives rise to the 65-kDa phosphoprotein described here.
Collapse
Affiliation(s)
- N Burlini
- Dipartimento di Fisiologia, Università di Milano, Italy
| | | | | | | | | |
Collapse
|
19
|
Saavedra C, Araneda S, Cardemil E. Affinity labeling of Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase with the 2',3'-dialdehyde derivative of ATP. Arch Biochem Biophys 1988; 267:38-45. [PMID: 3058040 DOI: 10.1016/0003-9861(88)90005-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase [ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49] is completely inactivated by the 2',3'-dialdehyde derivative of ATP (oATP) in the presence of Mn2+. The dependence of the pseudo-first-order rate constant on reagent concentration indicates the formation of a reversible complex with the enzyme (Kd = 60 +/- 17 microM) prior to covalent modification. The maximum inactivation rate constant at pH 7.5 and 30 degrees C is 0.200 +/- 0.045 min-1. ATP or ADP plus phosphoenolpyruvate effectively protect the enzyme against inactivation. oATP is a competitive inhibitor toward ADP, suggesting that oATP interacts with the enzyme at the substrate binding site. The partially inactivated enzyme shows an unaltered Km but a decreased V as compared with native phosphoenolpyruvate carboxykinase. Analysis of the inactivation rate at different H+ concentrations allowed estimation of a pKa of 8.1 for the reactive amino acid residue in the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of about one mole of [8-14C]oATP per mole of enzyme subunit. The results indicate that oATP can be used as an affinity label for yeast phosphoenolpyruvate carboxykinase.
Collapse
Affiliation(s)
- C Saavedra
- Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile
| | | | | |
Collapse
|
20
|
Malebrán LP, Cardemil E. The presence of functional arginine residues in phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 915:385-92. [PMID: 3307926 DOI: 10.1016/0167-4838(87)90024-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Saccharomyces cerevisiae phosphoenolpyruvate carboxykinase (ATP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.49) is completely inactivated by phenylglyoxal and 2,3-butanedione in borate buffer at pH 8.4, with pseudo-first-order kinetics and a second-order rate constant of 144 min-1 X M-1 and 21.6 min-1 X M-1, respectively. Phosphoenolpyruvate, ADP and Mn2+ (alone or in combination) protect the enzyme against inactivation, suggesting that the modification occurs at or near to the substrate-binding site. Almost complete restoration of activity was obtained when a sample of 2,3-butanedione-inactivated enzyme was freed of excess modifier and borate ions, suggesting that only arginyl groups are modified. The changes in the rate of inactivation in the presence of substrates and Mn2+ were used to determine the dissociation constants for enzyme-ligand complexes, and values of 23 +/- 3 microM, 168 +/- 44 microM and 244 +/- 54 microM were found for the dissociation constants for the enzyme-Mn2+, enzyme-ADP and enzyme-phosphoenolpyruvate complexes, respectively. Based on kinetic data, it is shown that 1 mol of reagent must combine per enzyme active unit in order to inactivate the enzyme. Complete inactivation of the carboxykinase can be correlated with the incorporation of 3-4 mol [7-14C]phenylglyoxal per mol of enzyme subunit. Assuming a stoichiometry of 1:1 between phenylglyoxal incorporation and arginine modification, our results suggest that the modification of only two of the three to four reactive arginine residues per phosphoenolpyruvate carboxykinase subunit is responsible for inactivation.
Collapse
Affiliation(s)
- L P Malebrán
- Departamento de Química, Facultad de Ciencia, Universidad de Santiago de Chile
| | | |
Collapse
|
21
|
Burlini N, Lamponi S, Radrizzani M, Monti E, Tortora P. Identification of a phosphorylated form of phosphoenolpyruvate carboxykinase from the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 930:220-9. [PMID: 3040123 DOI: 10.1016/0167-4889(87)90034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A phosphoprotein of 65 kDa, as determined by SDS-gel electrophoresis, has been isolated from yeast crude extracts. This phospho form copurifies with phosphoenolpyruvate carboxykinase in the enzyme purification procedure worked out in our laboratory (Tortora, P., Hanozet, G.M. and Guerritore, A. (1985) Anal. Biochem. 144, 179-185). Moreover, both proteins bind strongly to 5'AMP-Sepharose 4B in the presence of Mn2+, whereas a substantially lower binding occurs if Mn2+ is replaced by Mg2+. This binding pattern is consistent with the well-known Mn2+-dependence of yeast phosphoenolpyruvate carboxykinase. These data suggest that the 65-kDa protein might be a phosphorylation product of the native enzyme. Furthermore, although the phospho form is not immunoprecipitated by anti-phosphoenolpyruvate carboxykinase antibodies, addition of Protein A-Sepharose CL-4B to crude extracts preincubated with the antibodies results in the binding to the resin of the phospho form, thus providing immunological evidence for its identification as a modified form of native enzyme. The same 65-kDa phosphoprotein is detectable in extracts from cells grown in the presence of [32P]Pi, as well as in cell extracts incubated with [gamma-32P]ATP. Moreover, digestion of the phosphoprotein with BrCN or with Staphylococcus aureus V8 proteinase, yields two and three fragments, respectively, which appear parallel to digestion products of phosphoenolpyruvate carboxykinase, again supporting the proposed identification. Finally, analysis of the phosphorylated amino acids in the 65-kDa protein shows that phosphoserine is the only labelled phosphoamino acid.
Collapse
|
22
|
Bataillé N, Peypouquet MF, Boucherie H. Identification of polypeptides of the carbon metabolism machinery on the two-dimensional protein map of Saccharomyces cerevisiae. Location of 23 additional polypeptides. Yeast 1987; 3:11-21. [PMID: 3332961 DOI: 10.1002/yea.320030104] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Using a modification of the basic two-dimensional polyacrylamide gel electrophoresis technique, we have undertaken a systematic identification of the polypeptides of the protein map of Saccharomyces cerevisiae corresponding to components of the carbon metabolism machinery. To the previous location of nine glycolytic enzyme polypeptides on the yeast protein map we add the location of 23 polypeptides. Ten of them were identified as corresponding to cytoplasmic enzymes of the carbon metabolism machinery and 13 were characterized as mitochondrial proteins. The criteria used to establish the identification of these polypeptides spots include migration with purified proteins, immunodetection, overproduction by plasmid-carrying strains and physiological behaviour.
Collapse
Affiliation(s)
- N Bataillé
- Laboratoire de Génétique, Allée des Facultés, Facultés des Sciences, Talence, France
| | | | | |
Collapse
|