1
|
Stoddard EG, Killinger BJ, Nag SA, Corley RA, Smith JN, Wright AT. Benzo[ a]pyrene Induction of Glutathione S-Transferases: An Activity-Based Protein Profiling Investigation. Chem Res Toxicol 2019; 32:1259-1267. [PMID: 30938511 PMCID: PMC7138413 DOI: 10.1021/acs.chemrestox.9b00069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules. Conjugative enzymes, such as glutathione S-transferases or UDP-glucuronosyltransferases, are responsible for the detoxification and/or facilitate the elimination of these carcinogens. While responses to PAH exposures have been extensively studied for the bioactivating cytochrome P450 enzymes, much less is known regarding the response of glutathione S-transferases in mammalian systems. In this study, we investigated the expression and activity responses of murine hepatic glutathione S-transferases to benzo[ a]pyrene exposure using global proteomics and activity-based protein profiling for chemoproteomics, respectively. Using this approach, we identified several enzymes exhibiting increased activity including GSTA2, M1, M2, M4, M6, and P1. The activity of one GST enzyme, GSTA4, was found to be downregulated with increasing B[ a]P dose. Activity responses of several of these enzymes were identified as being expression-independent when comparing global and activity-based data sets, possibly alluding to as of yet unknown regulatory post-translational mechanisms.
Collapse
Affiliation(s)
- Ethan G. Stoddard
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bryan J. Killinger
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| | - Subhasree A. Nag
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard A. Corley
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N. Smith
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Aaron T. Wright
- Chemical Biology and Exposure Sciences, Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
2
|
Crouch MD, Barker SA. Analysis of toxic wastes in tissues from aquatic species. Applications of matrix solid-phase dispersion. J Chromatogr A 1997; 774:287-309. [PMID: 9253192 DOI: 10.1016/s0021-9673(97)00089-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
One of the difficult tasks in studying toxic wastes in the environment is the process involved in their extraction from biological matrices. This review addresses the regulatory aspects which mandate subsequent analyses in aquatic species and the studies which have addressed these problems from a variety of analytical perspectives. In this regard, the tissue extraction process known as matrix solid-phase dispersion is also reviewed and data are presented indicating that it may provide a generic process for the extraction and subsequent analysis of pesticides, polynuclear aromatic hydrocarbons and polychlorinated biphenyls.
Collapse
Affiliation(s)
- M D Crouch
- Terra Consulting Group Incorporated, Baton Rouge, LA 70808, USA
| | | |
Collapse
|
3
|
Ramsdell HS, Eaton DL. Mouse liver glutathione S-transferase isoenzyme activity toward aflatoxin B1-8,9-epoxide and benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide. Toxicol Appl Pharmacol 1990; 105:216-25. [PMID: 2120795 DOI: 10.1016/0041-008x(90)90183-u] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As part of the studies of the biochemical basis for species differences in biotransformation of the carcinogen aflatoxin B1 (AFB1) and its modulation by phenolic antioxidants, we have investigated the role of mouse liver glutathione S-transferase (GST) isoenzymes in the conjugation of AFB1-8,9-epoxide. Isoenzymes of GST were purified to electrophoretic homogeneity from Swiss-Webster mouse liver cytosol by affinity chromatography and chromatofocusing. The isoenzyme fractions were characterized in terms of activity toward surrogate substrates and immunologic cross-reactivity with antisera to rat GSTs. The major isoenzymes were identified as SW 4-4, SW 3-3, and SW 1-1. The specific activity of SW 4-4 toward AFB1-8,9-epoxide was at least 50- and 150-fold greater than that of SW 3-3 and SW 1-1, respectively. Relatively high activity toward another epoxide carcinogen, benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide, was observed with both SW 4-4 and SW 3-3. SW 1-1 had the highest activity toward 1-chloro-2,4-dinitrobenzene (CDNB) whereas SW 4-4 had relatively low CDNB activity. Following pretreatment with 0.75% butylated hydroxyanisole in the diet, the fraction of total GST contributed by SW 1-1 appeared to increase dramatically, whereas in control mice SW 3-3 constituted the predominant isoenzyme. The high GST activity of mouse liver cytosol toward AFB1-8,9-epoxide is apparently due to an isoenzyme that contributes little to the overall cytosolic CDNB activity.
Collapse
Affiliation(s)
- H S Ramsdell
- Department of Environmental Health, University of Washington, Seattle 98195
| | | |
Collapse
|