1
|
Alg mannosyltransferases: From functional and structural analyses to the lipid-linked oligosaccharide pathway reconstitution. Biochim Biophys Acta Gen Subj 2022; 1866:130112. [PMID: 35217128 DOI: 10.1016/j.bbagen.2022.130112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND N-glycosylation is initiated from the biosynthesis of lipid-linked oligosaccharide (LLO) on the endoplasmic reticulum (ER), which is catalyzed by a series of Alg (asparagine-linked glycosylation) proteins. SCOPE OF REVIEW This review summarizes our recent studies on the enzymology of Alg mannosyltransferases (MTases). We also discuss the membrane topology and physiological importance of several ER cytosolic Alg proteins. MAJOR CONCLUSIONS Utilizing an efficient prokaryotic protein expression system and a new LC-MS quantitative activity assay, we overexpressed all Alg MTases and performed enzymology studies. Moreover, by reconstituting the LLO pathway, the high-yield chemoenzymatic synthesis of high-mannose-type N-glycans was accomplished using recombinant Alg MTases. GENERAL SIGNIFICANCE The analysis of the enzymology and topology of Alg MTases has provided valuable biochemical information in the LLO biosynthesis pathway. In addition, an efficient chemoenzymatic strategy that could prepare various oligomannose-type N-glycans in sufficient amounts was established for further biological assays.
Collapse
|
2
|
Chao Q, Ding Y, Chen ZH, Xiang MH, Wang N, Gao XD. Recent Progress in Chemo-Enzymatic Methods for the Synthesis of N-Glycans. Front Chem 2020; 8:513. [PMID: 32612979 PMCID: PMC7309569 DOI: 10.3389/fchem.2020.00513] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 01/06/2023] Open
Abstract
Asparagine (N)-linked glycosylation is one of the most common co- and post-translational modifications of both intra- and extracellularly distributing proteins, which directly affects their biological functions, such as protein folding, stability and intercellular traffic. Production of the structural well-defined homogeneous N-glycans contributes to comprehensive investigation of their biological roles and molecular basis. Among the various methods, chemo-enzymatic approach serves as an alternative to chemical synthesis, providing high stereoselectivity and economic efficiency. This review summarizes some recent advances in the chemo-enzymatic methods for the production of N-glycans, including the preparation of substrates and sugar donors, and the progress in the glycosyltransferases characterization which leads to the diversity of N-glycan synthesis. We discuss the bottle-neck and new opportunities in exploiting the chemo-enzymatic synthesis of N-glycans based on our research experiences. In addition, downstream applications of the constructed N-glycans, such as automation devices and homogeneous glycoproteins synthesis are also described.
Collapse
Affiliation(s)
| | | | | | | | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
3
|
Li ST, Lu TT, Xu XX, Ding Y, Li Z, Kitajima T, Dean N, Wang N, Gao XD. Reconstitution of the lipid-linked oligosaccharide pathway for assembly of high-mannose N-glycans. Nat Commun 2019; 10:1813. [PMID: 31000718 PMCID: PMC6472349 DOI: 10.1038/s41467-019-09752-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/29/2019] [Indexed: 11/11/2022] Open
Abstract
The asparagine (N)-linked Man9GlcNAc2 is required for glycoprotein folding and secretion. Understanding how its structure contributes to these functions has been stymied by our inability to produce this glycan as a homogenous structure of sufficient quantities for study. Here, we report the high yield chemoenzymatic synthesis of Man9GlcNAc2 and its biosynthetic intermediates by reconstituting the eukaryotic lipid-linked oligosaccharide (LLO) pathway. Endoplasmic reticulum mannosyltransferases (MTases) are expressed in E. coli and used for mannosylation of the dolichol mimic, phytanyl pyrophosphate GlcNAc2. These recombinant MTases recognize unique substrates and when combined, synthesize end products that precisely mimic those in vivo, demonstrating that ordered assembly of LLO is due to the strict enzyme substrate specificity. Indeed, non-physiological glycans are produced only when the luminal MTases are challenged with cytosolic substrates. Reconstitution of the LLO pathway to synthesize Man9GlcNAc2 in vitro provides an important tool for functional studies of the N-linked glycoprotein biosynthesis pathway. Attachment of the oligosaccharide Man9GlcNAc2 is required for glycoprotein folding and secretion but synthesizing this compound for structural and functional studies has remained challenging. Here, the authors achieve efficient Man9GlcNAc2 synthesis by reconstituting its biosynthetic pathway in vitro.
Collapse
Affiliation(s)
- Sheng-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Tian-Tian Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Xin-Xin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Yi Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zijie Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Toshihiko Kitajima
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Neta Dean
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, 11794-5215, USA
| | - Ning Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| | - Xiao-Dong Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
4
|
Bickel T, Lehle L, Schwarz M, Aebi M, Jakob CA. Biosynthesis of lipid-linked oligosaccharides in Saccharomyces cerevisiae: Alg13p and Alg14p form a complex required for the formation of GlcNAc(2)-PP-dolichol. J Biol Chem 2005; 280:34500-6. [PMID: 16100113 DOI: 10.1074/jbc.m506358200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-Glycosylation in the endoplasmic reticulum is an essential protein modification and highly conserved in evolution from yeast to man. Here we identify and characterize two essential yeast proteins having homology to bacterial glycosyltransferases, designated Alg13p and Alg14p, as being required for the formation of GlcNAc(2)-PP-dolichol (Dol), the second step in the biosynthesis of the unique lipid-linked core oligosaccharide. Down-regulation of each gene led to a defect in protein N-glycosylation and an accumulation of GlcNAc(1)-PP-Dol in vivo as revealed by metabolic labeling with [(3)H]glucosamine. Microsomal membranes from cells repressed for ALG13 or ALG14, as well as detergent-solubilized extracts thereof, were unable to catalyze the transfer of N-acetylglucosamine from UDP-GlcNAc to [(14)C]GlcNAc(1)-PP-Dol, but did not impair the formation of GlcNAc(1)-PP-Dol or GlcNAc-GPI. Immunoprecipitating Alg13p from solubilized extracts resulted in the formation of GlcNAc(2)-PP-Dol but required Alg14p for activity, because an Alg13p immunoprecipitate obtained from cells in which ALG14 was down-regulated lacked this activity. In Western blot analysis it was demonstrated that Alg13p, for which no well defined transmembrane segment has been predicted, localizes both to the membrane and cytosol; the latter form, however, is enzymatically inactive. In contrast, Alg14p is exclusively membrane-bound. Repression of the ALG14 gene causes a depletion of Alg13p from the membrane. By affinity chromatography on IgG-Sepharose using Alg14-ZZ as bait, we demonstrate that Alg13-myc co-fractionates with Alg14-ZZ. The data suggest that Alg13p associates with Alg14p to a complex forming the active transferase catalyzing the biosynthesis of GlcNAc(2)-PP-Dol.
Collapse
Affiliation(s)
- Tanja Bickel
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
5
|
Kelleher DJ, Karaoglu D, Gilmore R. Large-scale isolation of dolichol-linked oligosaccharides with homogeneous oligosaccharide structures: determination of steady-state dolichol-linked oligosaccharide compositions. Glycobiology 2001; 11:321-33. [PMID: 11358881 DOI: 10.1093/glycob/11.4.321] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dolichol-linked oligosaccharide donor (Glc(3)Man(9)GlcNAc(2)-PP-Dol) for N-linked glycosylation of proteins is assembled in a series of reactions that initiate on the cytoplasmic face of the rough endoplasmic reticulum and terminate within the lumen. The biochemical analysis of the oligosaccharyltransferase and the glycosyltransferases that mediate assembly of dolichol-linked oligosaccharides (OS-PP-Dol) has been hindered by the lack of structurally homogeneous substrate preparations. We have developed an improved method for the preparative-scale isolation of dolichol-linked oligosaccharides from vertebrate tissues and yeast cells. Preparations that were highly enriched in either Glc(3)Man(9)GlcNAc(2)-PP-Dol or Man(9)GlcNAc(2)-PP-Dol were obtained from porcine pancreas and a Man(5)GlcNAc(2)-PP-Dol preparation was obtained from an alg3 yeast culture. Chromatography of the OS-PP-Dol preparations on an aminopropyl silica column was used to obtain dolichol-linked oligosaccharides with defined structures. A single chromatography step could achieve near-baseline resolution of dolichol-linked oligosaccharides that differed by one sugar residue. A sensitive oligosaccharyltransferase endpoint assay was used to determine the concentration and composition of the OS-PP-Dol preparations. Typical yields of Glc(3)Man(9)GlcNAc(2)-PP-Dol, Man(9)GlcNAc(2)-PP-Dol, and Man(5)GlcNAc(2)-PP-Dol ranged between 5 and 15 nmol per chromatographic run. The homogeneity of these preparations ranged between 85 and 98% with respect to oligosaccharide composition. Purification of dolichol-linked oligosaccharides from cultures of alg mutant yeast strains provides a general method to obtain authentic OS-PP-Dol assembly intermediates of high purity. The analytical methods described here can be used to accurately evaluate the steady-state dolichol-linked oligosaccharide compositions of wild-type and mutant cell lines.
Collapse
Affiliation(s)
- D J Kelleher
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655-0103, USA
| | | | | |
Collapse
|
6
|
Sharma CB, Knauer R, Lehle L. Biosynthesis of lipid-linked oligosaccharides in yeast: the ALG3 gene encodes the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase. Biol Chem 2001; 382:321-8. [PMID: 11308030 DOI: 10.1515/bc.2001.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The formation of N-glycosidic linkages of glycoproteins involves the ordered assembly of the common Glc3Man9GlcNAc2 core-oligosaccharide on the lipid carrier dolichyl pyrophosphate. Whereas early mannosylation steps occur on the cytoplasmic side of the endoplasmic reticulum with GDP-Man as donor, the final reactions from Man5GlcNAc2-PP-Dol to Man9GlcNAc2-PP-Dol on the lumenal side use Dol-P-Man. We have investigated these later stages in vitro using a detergent-solubilized enzyme extract from yeast membranes. Mannosyltransfer from Dol-P-Man to [3H]Man5GlcNAc2-PP-Dol with formation of all intermediates up to Man9GlcNAc2-PP-Dol occured in a rapid, time- and protein-dependent fashion. We find that the initial reaction from Man5GlcNAc2-PP-Dol to Man6GlcNAc2-PP-Dol is independent of metal ions, but further elongations need Mn2+ that can be partly replaced by Mg2+ or Ca2+. Zn2+ or Cd2+ ions were found to inhibit formation of Man(7-9)GlcNAc2-PP-Dol, but do not affect synthesis of Man6GlcNAc2-PP-Dol. Extension did not occur when the acceptor was added as a free Man5GlcNAc2 oligosaccharide or when GDP-Man was used as mannosyl donor. The alg3 mutant was described to accumulate Man5GlcNAc2-PP-Dol. We expressed a functional active HA-epitope tagged ALG3 fusion and succeeded to selectively immunoprecipitate the Dol-P-Man:Man5GlcNAc2-PP-Dol mannosyltransferase activity from the other enzymes of the detergent extract involved in the subsequent mannosylation reactions. This demonstrates that Alg3p represents the mannosyltransferase itself and not an accessory protein involved in the reaction.
Collapse
Affiliation(s)
- C B Sharma
- Lehrstuhl für Zellbiologie und Pflanzenphysiologie, Universität Regensburg, Germany
| | | | | |
Collapse
|
7
|
Revers L, Bill RM, Wilson IB, Watt GM, Flitsch SL. Development of recombinant, immobilised beta-1,4-mannosyltransferase for use as an efficient tool in the chemoenzymatic synthesis of N-linked oligosaccharides. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1428:88-98. [PMID: 10366763 DOI: 10.1016/s0304-4165(99)00048-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The preparation of the conserved core structure of asparagine-linked oligosaccharides found in eukaryotic glycoproteins is an important step towards the synthesis of homogeneous neoglycoproteins. So far, however, the convenient generation of the Manbeta4GlcNAcbeta4GlcNAc (Gn2M) core trisaccharide has proved to be a major obstacle because of the inherent difficulties associated with the synthesis of beta-mannosides. Here we report the overproduction in Escherichia coli of full-length and transmembrane-deleted yeast beta-1, 4-mannosyltransferases as novel N-terminal fusions bearing a decahistidinyl sequence and the minimal human Myc epitope. The recombinant enzymes were highly active and were amenable to immobilisation by nickel(II) chelation and to immunodetection with an anti-Myc monoclonal antibody. The immobilised, transmembrane-deleted enzyme exhibited an apparent Km of 14 microM for the synthetic acceptor substrate analogue, phytanyl-pyrophosphoryl-alpha-N,N'-diacetylchitobioside (PPGn2), under saturating donor conditions. This figure is comparable to those previously reported for native and recombinant yeast beta-1, 4-mannosyltransferases with, respectively, the natural dolichyl-linked acceptor and PPGn2. The validity of the reaction product was confirmed by chromatographic and spectroscopic analysis.
Collapse
Affiliation(s)
- L Revers
- The Edinburgh Centre for Protein Technology, Department of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Ridley BL, Spiro MD, Glushka J, Albersheim P, Darvill A, Mohnen D. A method for biotin labeling of biologically active oligogalacturonides using a chemically stable hydrazide linkage. Anal Biochem 1997; 249:10-9. [PMID: 9193702 DOI: 10.1006/abio.1997.2165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Oligogalacturonides (oligomers of alpha-1,4-D-galacturonic acid) with degrees of polymerization (DP) between 8 and 16 were labeled with biotin using a rapid and simple two-reaction protocol that yields a stable oligogalacturonide derivative. In the first reaction biotin-x-hydrazide was coupled to the anomeric carbon of the reducing galacturonic acid residue by a hydrazone linkage. Carbohydrate-hydrazone linkages such as these have been widely used to label a variety of biomolecules. However, we show herein that the oligogalacturonide-hydrazone linkage is hydrolyzed in water. In the second reaction the hydrazone linkage was reduced with sodium cyanoborohydride to form a stable hydrazide. The stability of hydrazide-linked oligogalacturonides was confirmed using high-performance anion-exchange chromatography (HPAEC). The biotin and uronic acid content of the HPAEC fractions was determined using quantitative colorimetric microplate assays. Electrospray mass spectrometry and 1H NMR spectroscopy were used to confirm the structure of the HPAEC-purified biotin-derivatized oligogalacturonides. Biotin-derivatized oligogalacturonides will be useful in studies of the biological functions of oligogalacturonides.
Collapse
Affiliation(s)
- B L Ridley
- Complex Carbohydrate Research Center, University of Georgia, Athens 30602-4712, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Konrad M, Merz W. Regulation of N-glycosylation. Long term effect of cyclic AMP mediates enhanced synthesis of the dolichol pyrophosphate core oligosaccharide. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
11
|
Partial purification and properties of a glucosyltransferase that synthesizes Glc1Man9(GlcNAc)2-pyrophosphoryldolichol. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53456-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|