1
|
Sajeev A, Sailo B, Unnikrishnan J, Talukdar A, Alqahtani MS, Abbas M, Alqahtani A, Sethi G, Kunnumakkara AB. Unlocking the potential of Berberine: Advancing cancer therapy through chemosensitization and combination treatments. Cancer Lett 2024; 597:217019. [PMID: 38849013 DOI: 10.1016/j.canlet.2024.217019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024]
Abstract
Despite considerable progress in cancer treatment options, resistance to chemotherapeutic drugs remains a significant challenge. This review focuses on Berberine (BBR), an isoquinoline alkaloid found in various medicinal plants, which has garnered attention in the field of oncology for its anticancer potential either alone or in combination with other compounds and its ability to modulate chemoresistance, acting as a natural chemosensitizer. BBR's ability to modulate chemoresistance is attributed to its diverse mechanisms of action, including inducing DNA breaks, inhibition of drug efflux pumps, modulation of apoptosis and necroptosis, downregulating multidrug resistance genes, enhancing immune response, suppressing angiogenesis and targeting multiple pathways within cancer cells, including protein kinase B/mammalian target of rapamycin (Akt/mTOR), epidermal growth factor receptor (EGFR), mitogen-activated protein kinase (MAPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), poly(ADP-ribose) polymerase (PARP1), janus kinase/signal transducers and activators of transcription (JAK-STAT), Wnt/β-catenin etc. Moreover, BBR, in combination with other compounds, also offers a promising approach to cancer therapy, enforcing its broad-spectrum anticancer effects. Therefore, this review aims to elucidate the intricate mechanism of action of BBR in combinatorial therapy as a potential chemosensitizer to increase the efficiency of several drugs, including cisplatin, doxorubicin, lapatinib, tamoxifen, irinotecan, niraparib, etc. in various cancers. Additionally, this review briefly covers the origin and biological activities of BBR, exploring the specific actions underlying its anticancer effects. Further, pharmacokinetic properties of BBR are also discussed, providing insight into its therapeutic potential and optimization of its use in cancer treatment.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Bethsebie Sailo
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Jyothsna Unnikrishnan
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Ayesha Talukdar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City. P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Nakagawa A, Takahashi H, Kojima S, Sato N, Ohga K, Cha BY, Woo JT, Nagai K, Horiguchi G, Tsukaya H, Machida Y, Machida C. Berberine enhances defects in the establishment of leaf polarity in asymmetric leaves1 and asymmetric leaves2 of Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2012; 79:569-81. [PMID: 22684430 PMCID: PMC3402677 DOI: 10.1007/s11103-012-9929-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 05/13/2012] [Indexed: 05/09/2023]
Abstract
Leaves develop as flat lateral organs from the indeterminate shoot apical meristem. The establishment of polarity along three-dimensional axes, proximal-distal, medial-lateral, and adaxial-abaxial axes, is crucial for the growth of normal leaves. The mutations of ASYMMETRIC LEAVES1 (AS1) and AS2 of Arabidopsis thaliana cause defects in repression of the indeterminate state and the establishment of axis formation in leaves. Although many mutations have been identified that enhance the adaxial-abaxial polarity defects of as1 and as2 mutants, the roles of the causative genes in leaf development are still unknown. In this study, we found that wild-type plants treated with berberine produced pointed leaves, which are often observed in the single mutants that enhance phenotypes of as1 and as2 mutants. The berberine-treated as1 and as2 mutants formed abaxialized filamentous leaves. Berberine, an isoquinoline alkaloid compound naturally produced in various plant sources, has a growth inhibitory effect on plants that do not produce berberine. We further showed that transcript levels of meristem-specific class 1 KNOX homeobox genes and abaxial determinant genes were increased in berberine-treated as1 and as2. Berberine treated plants carrying double mutations of AS2 and the large subunit ribosomal protein gene RPL5B showed more severe defects in polarity than did the as2 single mutant plants. We suggest that berberine inhibits (a) factor(s) that might be required for leaf adaxial cell differentiation through a pathway independent of AS1 and AS2. Multiple pathways might play important roles in the formation of flat symmetric leaves.
Collapse
Affiliation(s)
- Ayami Nakagawa
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Hiro Takahashi
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Shoko Kojima
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Nobuo Sato
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kazuomi Ohga
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Byung Yoon Cha
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Je-Tae Woo
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Kazuo Nagai
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Research Institute for Biological Functions, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501 Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasunori Machida
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
| | - Chiyoko Machida
- Plant Biology Research Center, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501 Japan
| |
Collapse
|
3
|
Balieu S, Toutah K, Carro L, Chamoreau LM, Rousselière H, Courillon C. Radical cyclization of ynamides into six- or eight-membered rings. Application to the synthesis of a protoberberine analog. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.03.118] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Protoberberine Alkaloids: Physicochemical and Nucleic Acid Binding Properties. TOPICS IN HETEROCYCLIC CHEMISTRY 2007. [DOI: 10.1007/7081_2007_071] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Maiti M, Kumar GS. Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives. Med Res Rev 2007; 27:649-95. [PMID: 16894530 DOI: 10.1002/med.20087] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alkaloids occupy an important position in chemistry and pharmacology. Among the various alkaloids, berberine and coralyne of the protoberberine group, sanguinarine of the benzophenanthridine group, and aristololactam-beta-d-glucoside of the aristolochia group have potential to form molecular complexes with nucleic acid structures and have attracted recent attention for their prospective clinical and pharmacological utility. This review highlights (i) the physicochemical properties of these alkaloids under various environmental conditions, (ii) the structure and functional aspects of various forms of deoxyribonucleic acid (DNA) (B-form, Z-form, H(L)-form, protonated form, and triple helical form) and ribonucleic acid (RNA) (A-form, protonated form, and triple helical form), and (iii) the interaction of these alkaloids with various polymorphic DNA and RNA structures reported by several research groups employing various analytical techniques like absorbance, fluorescence, circular dichroism, and NMR spectroscopy; electrospray ionization mass spectrometry, thermal melting, viscosity, and DNase footprinting as well as molecular modeling and thermodynamic studies to provide detailed binding mechanism at the molecular level for structure-activity relationship. Nucleic acids binding properties of these alkaloids are interpreted in relation to their biological activity.
Collapse
Affiliation(s)
- Motilal Maiti
- Biophysical Chemistry Laboratory, Indian Institute of Chemical Biology, Kolkata 700 032, India.
| | | |
Collapse
|
6
|
Kuo CL, Chou CC, Yung BY. Berberine complexes with DNA in the berberine-induced apoptosis in human leukemic HL-60 cells. Cancer Lett 1995; 93:193-200. [PMID: 7621428 DOI: 10.1016/0304-3835(95)03809-b] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Berberine, an alkaloid initially isolated from Chinese herbal medicine exhibited the ability to induce morphological changes and internucleosomal DNA fragmentation, characteristic of apoptosis in promyelocytic leukemia HL-60 cells. Cell cycle studies showed that only about 20% of the cells underwent apoptosis at the early time (6 h) of berberine (25 micrograms/ml) treatment; these appeared to be cells in S phase at the time of berberine treatment. At extended time (6-48 h), cells were cell cycle arrested, the number of cells of each phase, particularly the cells of S phase decreased and much more (> 50%) of the cells appeared with DNA content less than G1. Attempts were also made to isolate possible berberine-DNA complexes from cell cultures treated with berberine (25 micrograms/ml; 2-24 h). Shifts of absorption maxima of berberine in the direction of longer wavelengths were observed in the isolated berberine-DNA complexes. Palmatine, an analog of berberine, which was not able to induce apoptosis, also complexed with DNA in cells treated with palmatine (25 micrograms/ml; 2-24 h). Our results suggest that some important cellular processes other than the intracellular DNA-interacting action of berberine may be involved in the berberine-induced apoptosis in HL-60 cells.
Collapse
Affiliation(s)
- C L Kuo
- Graduate Institute of Pharmacology, Yang Ming Medical College, Taiwan, ROC
| | | | | |
Collapse
|
7
|
Enerbäck L. Berberine sulphate binding to mast cell polyanions: a cytofluorometric method for the quantitation of heparin. HISTOCHEMISTRY 1974; 42:301-13. [PMID: 4448705 DOI: 10.1007/bf00492678] [Citation(s) in RCA: 121] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
Hahn FE, Krey AK. Interactions of Alkaloids with DNA. PROCEEDINGS OF THE RESEARCH SYMPOSIUM ON COMPLEXES OF BIOLOGICALLY ACTIVE SUBSTANCES WITH NUCLEIC ACIDS AND THEIR MODES OF ACTION 1971. [DOI: 10.1007/978-3-642-65141-0_13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Abstract
A complex of calf-thymus DNA with berberine sediments in the analytical ultracentrifuge. The DNA produced systematic changes in the absorption spectrum of berberine which suggest that single alkaloid molecules bind to DNA. Flow dichroism of purines and pyrimidines and of berberine in the complex with DNA had the same signs and magnitudes. Berberine shifted the thermal strand separation profile of DNA to higher temperatures. Therefore, the alkaloid forms a complex with DNA, probably by intercalation.
Collapse
|