1
|
Yoneyama T, Suzuki A. Exploration of nitrate-to-glutamate assimilation in non-photosynthetic roots of higher plants by studies of 15N-tracing, enzymes involved, reductant supply, and nitrate signaling: A review and synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 136:245-254. [PMID: 30710774 DOI: 10.1016/j.plaphy.2018.12.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/16/2018] [Indexed: 05/03/2023]
Abstract
Roots of the higher plants can assimilate inorganic nitrogen by an enzymatic reduction of the most oxidized form (+6) nitrate to the reduced form (-2) glutamate. For such reactions, the substrates (originated from photosynthates) must be imported to supply energy through the reductant-generating systems within the root cells. Intensive studies over last 70 years (reviewed here) revealed the precise mechanisms of nitrate-to-glutamate transformation in roots with elaborate searches of 15N-tracing, enzymes involved, the reductant-supplying system, and nitrate signaling. In the 1970s, the tracing of 15N-labeled nitrate and ammonia in the roots demonstrated the sequential reduction and assimilation of nitrate to nitrite, ammonia, glutamine amide, and then glutamate. These reactions involve nitrate reductase (NADH-NR, EC 1.7.1.1) in the cytosol, nitrite reductase (ferredoxin [Fd]-NiR, EC 1.7.7.1), glutamine synthetase (GS2, EC 6.3.1.2), and glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in the plastids. NADH for NR is generated by glycolysis in the cytosol, and NADPH for Fd-NIR and Fd-GOGAT are produced by the oxidative pentose phosphate pathway (OPPP). Electrons from NADPH are conveyed to reduce NIR and Fd-GOGAT through Fd-NADP+ reductase (FNR, EC 1.6.7.1) specifically in the roots. Physiological and molecular analyses showed the parallel inductions of NR, NIR, GS2, Fd-GOGAT, OPPP enzymes, FNR, and Fd in response to a short-term nitrate supply. Recent studies proposed a molecular mechanism of nitrate-induction of these genes and proteins. Roots can also assimilate the reduced form of inorganic ammonia by the combination of cytosolic GS1 and plastidic NADH-GOGAT.
Collapse
Affiliation(s)
- Tadakatsu Yoneyama
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan.
| | - Akira Suzuki
- INRA, IJPB, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, F-78026, France.
| |
Collapse
|
2
|
Crispim M, Damasceno FS, Hernández A, Barisón MJ, Pretto Sauter I, Souza Pavani R, Santos Moura A, Pral EMF, Cortez M, Elias MC, Silber AM. The glutamine synthetase of Trypanosoma cruzi is required for its resistance to ammonium accumulation and evasion of the parasitophorous vacuole during host-cell infection. PLoS Negl Trop Dis 2018; 12:e0006170. [PMID: 29320490 PMCID: PMC5779702 DOI: 10.1371/journal.pntd.0006170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/23/2018] [Accepted: 12/16/2017] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma cruzi, the etiological agent of Chagas disease, consumes glucose and amino acids depending on the environmental availability of each nutrient during its complex life cycle. For example, amino acids are the major energy and carbon sources in the intracellular stages of the T. cruzi parasite, but their consumption produces an accumulation of NH4+ in the environment, which is toxic. These parasites do not have a functional urea cycle to secrete excess nitrogen as low-toxicity waste. Glutamine synthetase (GS) plays a central role in regulating the carbon/nitrogen balance in the metabolism of most living organisms. We show here that the gene TcGS from T. cruzi encodes a functional glutamine synthetase; it can complement a defect in the GLN1 gene from Saccharomyces cerevisiae and utilizes ATP, glutamate and ammonium to yield glutamine in vitro. Overall, its kinetic characteristics are similar to other eukaryotic enzymes, and it is dependent on divalent cations. Its cytosolic/mitochondrial localization was confirmed by immunofluorescence. Inhibition by Methionine sulfoximine revealed that GS activity is indispensable under excess ammonium conditions. Coincidently, its expression levels are maximal in the amastigote stage of the life cycle, when amino acids are preferably consumed, and NH4+ production is predictable. During host-cell invasion, TcGS is required for the parasite to escape from the parasitophorous vacuole, a process sine qua non for the parasite to replicate and establish infection in host cells. These results are the first to establish a link between the activity of a metabolic enzyme and the ability of a parasite to reach its intracellular niche to replicate and establish host-cell infection.
Collapse
Affiliation(s)
- Marcell Crispim
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Flávia Silva Damasceno
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Agustín Hernández
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - María Julia Barisón
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Ismael Pretto Sauter
- Immunobiology of Leishmania-Macrophage Interaction Laboratory, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Raphael Souza Pavani
- Special Laboratory of Cell Cycle, Center of Toxins, Immunology and Cell Signalling, Butantan Institute, São Paulo, SP, Brazil
| | - Alexandre Santos Moura
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Elizabeth Mieko Furusho Pral
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Immunobiology of Leishmania-Macrophage Interaction Laboratory, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Maria Carolina Elias
- Special Laboratory of Cell Cycle, Center of Toxins, Immunology and Cell Signalling, Butantan Institute, São Paulo, SP, Brazil
| | - Ariel Mariano Silber
- Laboratory of Biochemistry of Tryps—LaBTryps, Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
3
|
Ogrel A, Vasilenko IA, Lugtenburg J, Raap J. Enzymatic synthesis of specifically 2
H-labelled L-glutamic acids and 2
H-, 15
N-, 13
C-labelled L-glutamines on a preparative scale. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/recl.19941130706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Ammonium assimilation in different plant species as affected by nitrogen form and pH control in solution culture. ACTA ACUST UNITED AC 1989. [DOI: 10.1007/bf01054728] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Narasimhan C, Johari RP, Mehta SL. Nitrogen assimilation in opaque and normal sorghum during grain development. J Biosci 1987. [DOI: 10.1007/bf02703076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Vorhaben JE, Smith DD, Campbell JW. Characterization of glutamine synthetase from avian liver mitochondria. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1982; 14:747-56. [PMID: 6126400 DOI: 10.1016/0020-711x(82)90012-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
1. Glutamine synthetase has been purified to homogeneity from chicken liver mitochondria. 2. The native enzyme is an octamer composed of identical subunits with monomeric mol. wt of 42,000 dalton. 3. Apparent Kms for NH4+, ATP and glutamate were 0.5, 0.9 and 6 mM, respectively. D-Glutamate and L-alpha-hydroxyglutarate were utilized as substrates with activities approx. 40% those obtained with glutamate. Of several nucleotides tested, none were effective replacements for ATP. 4. Heavy metal ions were inhibitory as were Mn2+, Ca2+ and lanthanide ions. 5. Despite its different subcellular localization and physiological function, avian glutamine synthetase is markedly similar to the weakly-bound microsomal rat liver enzyme with respect to a number of physical and chemical properties.
Collapse
|
7
|
Iyer RK, Tuli R, Thomas J. Glutamine synthetases from rice: purification and preliminary characterization of two forms in leaves and one form in roots. Arch Biochem Biophys 1981; 209:628-36. [PMID: 6117254 DOI: 10.1016/0003-9861(81)90322-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Miflin BJ, Wallsgrove RM, Lea PJ. Glutamine metabolism in higher plants. CURRENT TOPICS IN CELLULAR REGULATION 1981; 20:1-43. [PMID: 6120060 DOI: 10.1016/b978-0-12-152820-1.50005-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
|
10
|
Seethalakshmi S, Rao NA. Regulation of the activity of mung bean (Phaseolus aureus) glutamine synthetase by amino acids and nucleotides. Arch Biochem Biophys 1979; 196:588-97. [PMID: 39513 DOI: 10.1016/0003-9861(79)90312-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Guiz C, Hirel B, Shedlofsky G, Gadal P. Occurrence and influence of light on the relative proportions of two glutamine sythetases in rice leaves. ACTA ACUST UNITED AC 1979. [DOI: 10.1016/0304-4211(79)90119-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Mann AF, Fentem PA, Stewart GR. Identification of two forms of glutamine synthetase in barley (Hordeum vulgare). Biochem Biophys Res Commun 1979; 88:515-21. [PMID: 37833 DOI: 10.1016/0006-291x(79)92078-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Stasiewicz S, Dunham VL. Isolation and characterization of two forms of glutamine synthetsae from soybean hypocotyl. Biochem Biophys Res Commun 1979; 87:627-34. [PMID: 36081 DOI: 10.1016/0006-291x(79)91840-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Sahulka J, Lisá L. Regulation of Glutamine Synthetase Level in Isolated Pea Roots. I. Differential Effects of Ammonium Salts in Sugar-supplied Roots. ACTA ACUST UNITED AC 1979. [DOI: 10.1016/s0015-3796(17)30623-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Sawhney SK, Nicholas DJ. Effects of amino acids, adenine nucleotides and inorganic pyrophosphate on glutamine synthetase from Anabaena cylindrica. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 527:485-96. [PMID: 31917 DOI: 10.1016/0005-2744(78)90362-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamine synthetase (L-glutamate:ammonia ligase (ADP-forming), EC 6.3.1.2) from Anabaena cylindrica was inhibited by alanine, glycine, serine and aspartate. The effects of alanine and serine were uncompetitive with respect to glutamate, while those of glycine and asparatate were uncompetitive with respect to glutamate, while those of glycine and aspartate were non-competitive and mixed type respectively. Different pairs of amino acids and their various combinations caused a cumulative inhibition of the enzyme activity. Glutamine synthetase was also inhibited by ADP and AMP and both nucleotides affected the enzyme competitively with respect to ATP and non-competitively for glutamate. Inorganic pyrophosphate, between 2 and 3 mM, produced a very pronounced inhibiton of enzyme activity. The inhibition by PPi was uncompetitive for ATP. Various combinations of the adenine nucleotides, PPi and Pi exerted a cumulative inhibitory effect on the enzyme activity, as did the amino acids, in different combinations with either adenine nucleotides, PPi or Pi. The effects of the adenine nucleotides and the amino acids were more pronounced at higher concentrations of ammonia. Except for serine similar responses of these effectors were obtained with increasing concentrations of Mg2+. It is proposed that changes in the free concentrations of Mg2+ are important in energy-dependent regulation of the enzyme activity in this alga.
Collapse
|
16
|
Sawhney SK, Nicholas DJ. Some properties of glutamine synthetase from Anabaena cylindrica. PLANTA 1978; 139:289-299. [PMID: 24414273 DOI: 10.1007/bf00388643] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/1977] [Accepted: 12/22/1977] [Indexed: 06/03/2023]
Abstract
Some properties of the biosynthetic and γ-glutamyltransferase activities of glutamine synthetase (EC 6.3.1.2) from Anabaena cylindrica are described, including requirement for divalent cations, pH optimum and Km for substrates. The γ-glutamyl-transferase reaction was inhibited by L-glutamate, ammonia and ATP. The inhibition by L-glutamate and ammonia was competitive for L-glutamine and non-competitive for hydroxylamine. Both the biosynthetic and the γ-glutamyltransferase activities of the desalted enzyme were much more sensitive to inactivation by treatments such as urea, hydroxylamine and incubation at 50° C than the preparation which contained a divalent cation. The effects of some substrates of these reactions on protection against thermal denaturation and hydroxylamine were examined. An interpretation of these results in terms of the sequence of binding of substrates both in the biosynthetic and the γ-glutamyltransferase reactions are discussed.
Collapse
Affiliation(s)
- S K Sawhney
- Department of Agricultural Biochemistry, Waite Agricultural Research Institute, University of Adelaide, 5064, Glen Osmond, South Australia
| | | |
Collapse
|
17
|
Webb JT, Brown GW. Some properties and occurrence of glutamine synthetase in fish. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1976; 54:171-5. [PMID: 5230 DOI: 10.1016/0305-0491(76)90077-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Kanamori T, Matsumoto H. The role of glutamine in asparagine biosynthesis in rice plant roots. ACTA ACUST UNITED AC 1975. [DOI: 10.1016/s0044-328x(75)80171-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
|
20
|
|
21
|
O'Neal D, Joy KW. Glutamine synthetase of pea leaves. I. Purification, stabilization, and pH optima. Arch Biochem Biophys 1973; 159:113-22. [PMID: 4150338 DOI: 10.1016/0003-9861(73)90435-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Dharmawardene MW, Haystead A, Stewart WD. Glutamine synthetase of the nitrogen-fixing alga Anabaena cylindrica. ARCHIV FUR MIKROBIOLOGIE 1973; 90:281-95. [PMID: 4144960 DOI: 10.1007/bf00408924] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|