1
|
Piattoni CV, Bustos DM, Guerrero SA, Iglesias AÁ. Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase is phosphorylated in wheat endosperm at serine-404 by an SNF1-related protein kinase allosterically inhibited by ribose-5-phosphate. PLANT PHYSIOLOGY 2011; 156:1337-50. [PMID: 21546456 PMCID: PMC3135918 DOI: 10.1104/pp.111.177261] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/02/2011] [Indexed: 05/17/2023]
Abstract
Nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase (np-Ga3PDHase) is a cytosolic unconventional glycolytic enzyme of plant cells regulated by phosphorylation in heterotrophic tissues. After interaction with 14-3-3 proteins, the phosphorylated enzyme becomes less active and more sensitive to regulation by adenylates and inorganic pyrophosphate. Here, we acknowledge that in wheat (Triticum aestivum), np-Ga3PDHase is specifically phosphorylated by the SnRK (SNF1-related) protein kinase family. Interestingly, only the kinase present in heterotrophic tissues (endosperm and shoots, but not in leaves) was found active. The specific SnRK partially purified from endosperm exhibited a requirement for Mg(2+) or Mn(2+) (being Ca(2+) independent), having a molecular mass of approximately 200 kD. The kinase also phosphorylated standard peptides SAMS, AMARA, and SP46, as well as endogenous sucrose synthase, results suggesting that it could be a member of the SnRK1 subfamily. Concurrently, the partially purified wheat SnRK was recognized by antibodies raised against a peptide conserved between SnRK1s from sorghum (Sorghum bicolor) and maize (Zea mays) developing seeds. The wheat kinase was allosterically inhibited by ribose-5-phosphate and, to a lesser extent, by fructose-1,6-bisphosphate and 3-phosphoglycerate, while glucose-6-phosphate (the main effector of spinach [Spinacia oleracea] leaves, SnRK1) and trehalose-6-phosphate produced little or no effect. Results support a distinctive allosteric regulation of SnRK1 present in photosynthetic or heterotrophic plant tissues. After in silico analysis, we constructed two np-Ga3PDHase mutants, S404A and S447A, identifying serine-404 as the target of phosphorylation. Results suggest that both np-Ga3PDHase and the specific kinase could be under control, critically affecting the metabolic scenario involving carbohydrates and reducing power partition and storage in heterotrophic plant cells.
Collapse
Affiliation(s)
| | | | | | - Alberto Álvaro Iglesias
- Instituto de Agrobiotecnología del Litoral (Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional del Litoral), Facultad de Bioquímica y Ciencias Biológicas, Paraje “El Pozo,” S3000ZAA Santa Fe, Argentina (C.V.P., S.A.G., A.A.I.); Instituto Tecnológico de Chascomús (Consejo Nacional de Investigaciones Científicas y Técnicas), 7130 Chascomus, Argentina (D.M.B.)
| |
Collapse
|
2
|
Piattoni CV, Rius SP, Gomez-Casati DF, Guerrero SA, Iglesias AA. Heterologous expression of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from Triticum aestivum and Arabidopsis thaliana. Biochimie 2010; 92:909-13. [DOI: 10.1016/j.biochi.2010.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 03/23/2010] [Indexed: 11/16/2022]
|
3
|
Holtgrefe S, Gohlke J, Starmann J, Druce S, Klocke S, Altmann B, Wojtera J, Lindermayr C, Scheibe R. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications. PHYSIOLOGIA PLANTARUM 2008; 133:211-28. [PMID: 18298409 DOI: 10.1111/j.1399-3054.2008.01066.x] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytosolic NAD-dependent glyceraldehyde 3-P dehydrogenase (GAPDH; GapC; EC 1.2.1.12) catalyzes the oxidation of triose phosphates during glycolysis in all organisms, but additional functions of the protein has been put forward. Because of its reactive cysteine residue in the active site, it is susceptible to protein modification and oxidation. The addition of GSSG, and much more efficiently of S-nitrosoglutathione, was shown to inactivate the enzymes from Arabidopsis thaliana (isoforms GapC1 and 2), spinach, yeast and rabbit muscle. Inactivation was fully or at least partially reversible upon addition of DTT. The incorporation of glutathione upon formation of a mixed disulfide could be shown using biotinylated glutathione ethyl ester. Furthermore, using the biotin-switch assay, nitrosylated thiol groups could be shown to occur after treatment with nitric oxide donors. Using mass spectrometry and mutant proteins with one cysteine lacking, both cysteines (Cys-155 and Cys-159) were found to occur as glutathionylated and as nitrosylated forms. In preliminary experiments, it was shown that both GapC1 and GapC2 can bind to a partial gene sequence of the NADP-dependent malate dehydrogenase (EC 1.2.1.37; At5g58330). Transiently expressed GapC-green fluorescent protein fusion proteins were localized to the nucleus in A. thaliana protoplasts. As nuclear localization and DNA binding of GAPDH had been shown in numerous systems to occur upon stress, we assume that such mechanism might be part of the signaling pathway to induce increased malate-valve capacity and possibly other protective systems upon overreduction and initial formation of reactive oxygen and nitrogen species as well as to decrease and protect metabolism at the same time by modification of essential cysteine residues.
Collapse
Affiliation(s)
- Simone Holtgrefe
- Department of Plant Physiology, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Marri L, Trost P, Pupillo P, Sparla F. Reconstitution and properties of the recombinant glyceraldehyde-3-phosphate dehydrogenase/CP12/phosphoribulokinase supramolecular complex of Arabidopsis. PLANT PHYSIOLOGY 2005; 139:1433-43. [PMID: 16258009 PMCID: PMC1283778 DOI: 10.1104/pp.105.068445] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form together with the regulatory peptide CP12 a supramolecular complex in Arabidopsis (Arabidopsis thaliana) that could be reconstituted in vitro using purified recombinant proteins. Both enzyme activities were strongly influenced by complex formation, providing an effective means for regulation of the Calvin cycle in vivo. PRK and CP12, but not GapA (A(4) isoform of GAPDH), are redox-sensitive proteins. PRK was reversibly inhibited by oxidation. CP12 has no enzymatic activity, but it changed conformation depending on redox conditions. GapA, a bispecific NAD(P)-dependent dehydrogenase, specifically formed a binary complex with oxidized CP12 when bound to NAD. PRK did not interact with either GapA or CP12 singly, but oxidized PRK could form with GapA/CP12 a stable ternary complex of about 640 kD (GapA/CP12/PRK). Exchanging NADP for NAD, reducing CP12, or reducing PRK were all conditions that prevented formation of the complex. Although GapA activity was little affected by CP12 alone, the NADPH-dependent activity of GapA embedded in the GapA/CP12/PRK complex was 80% inhibited in respect to the free enzyme. The NADH activity was unaffected. Upon binding to GapA/CP12, the activity of oxidized PRK dropped from 25% down to 2% the activity of the free reduced enzyme. The supramolecular complex was dissociated by reduced thioredoxins, NADP, 1,3-bisphosphoglycerate (BPGA), or ATP. The activity of GapA was only partially recovered after complex dissociation by thioredoxins, NADP, or ATP, and full GapA activation required BPGA. NADP, ATP, or BPGA partially activated PRK, but full recovery of PRK activity required thioredoxins. The reversible formation of the GapA/CP12/PRK supramolecular complex provides novel possibilities to finely regulate GapA ("non-regulatory" GAPDH isozyme) and PRK (thioredoxin sensitive) in a coordinated manner.
Collapse
Affiliation(s)
- Lucia Marri
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, 40126 Bologna, Italy
| | | | | | | |
Collapse
|
5
|
Bustos DM, Iglesias AA. Phosphorylated non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from heterotrophic cells of wheat interacts with 14-3-3 proteins. PLANT PHYSIOLOGY 2003; 133:2081-8. [PMID: 14681537 PMCID: PMC300759 DOI: 10.1104/pp.103.030981] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2003] [Revised: 08/27/2003] [Accepted: 09/12/2003] [Indexed: 05/20/2023]
Abstract
Glyceraldehyde-3-phosphate dehydrogenases catalyze key steps in energy and reducing power partitioning in cells of higher plants. Phosphorylated non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) present in heterotrophic cells of wheat (Triticum aestivum) was activated up to 3-fold by MgCl2. The effect was not observed with the non-phosphorylated enzyme found in leaves. The divalent cation also affected the response of the enzyme from endosperm and shoots to adenine nucleotides and inorganic pyrophosphate. Gel filtration chromatography, co-immunoprecipitation followed by immunostaining, and the use of a phosphopeptide containing a canonical binding motif showed that MgCl2 actually disrupted the interaction between GAPN and a 14-3-3 regulatory protein. After interaction with 14-3-3, phosphorylated GAPN exhibits a 3-fold lower Vmax and higher sensitivity to inhibition by ATP and pyrophosphate. Results suggest that GAPN is a target for regulation by phosphorylation, levels of divalent cations, and 14-3-3 proteins. The regulatory mechanism could be critical to maintain levels of energy and reductants in the cytoplasm of heterotrophic plant cells.
Collapse
Affiliation(s)
- Diego M Bustos
- Instituto Tecnológico de Chascomús, Camino Circunvalación Laguna km 6, CC 164, B7130IWA Chascomús, Argentina
| | | |
Collapse
|
6
|
Anderson JB, Carol AA, Brown VK, Anderson LE. A quantitative method for assessing co-localization in immunolabeled thin section electron micrographs. J Struct Biol 2003; 143:95-106. [PMID: 12972346 DOI: 10.1016/s1047-8477(03)00138-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A method is introduced for the analysis of nearest neighbor distances between immunogold particles marking proteins on electron micrographs. Deviation from the distribution that is predicted by chance indicates co-localization of the labeled species, and the potential for productive interaction in vivo. Application of this method to the analysis of nearest neighbor distances in experiments with pea leaf thin sections and isozyme-directed antibodies indicates that glyceraldehyde-3-P dehydrogenase is located near P-glycerate kinase and near aldolase in the chloroplast stroma, consistent with the notion that these enzymes are part of a multi-enzyme photosynthetic CO(2)-fixation complex in situ.
Collapse
Affiliation(s)
- James B Anderson
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
7
|
Iddar A, Valverde F, Serrano A, Soukri A. Purification of recombinant non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus pyogenes expressed in E. coli. Mol Cell Biochem 2003; 247:195-203. [PMID: 12841648 DOI: 10.1023/a:1024112027440] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Streprococcus pyogenes gapN was cloned and expressed by functional complementation of the Escherichia gap mutant W3CG. The IPTG-induced NADP non-phosphorylating GAPDH (GAPN) has been purified about 75.4 fold from E. coli cells, using a procedure involving conventional ammonium sulfate fractionation, anion-exchange chromatography, hydrophobic chromatography and hydroxyapatite chromatography. The purified protein was characterised: it's an homotetrameric structure with a native molecular mass of 224 kDa, have an acid pI of 4.9 and optimum pH of 8.5. Studies on the effect of assay temperature on enzyme activity revealed an optimal value of about 60 degrees C with activation energy of 51 KJ mole(-1). The apparent Km values for NADP and D-G3P or DL-G3P were estimated to be 0.385 +/- 0.05 and 0.666 +/- 0.1 mM, respectively and the Vmax of the purified protein was estimated to be 162.5 U mg(-1). The S. pyogenes GAPN was markedly inhibited by sulfydryl-modifying reagent iodoacetamide, these results suggest the participation of essential sulfydryl groups in the catalytic activity.
Collapse
Affiliation(s)
- Abdelghani Iddar
- Laboratoire de BBCM, Département de Biologie, Faculté des Sciences Aïn-Chock, Université Hassan-II, Mâarif, Casablanca, Morocco
| | | | | | | |
Collapse
|
8
|
Scheibe R, Wedel N, Vetter S, Emmerlich V, Sauermann SM. Co-existence of two regulatory NADP-glyceraldehyde 3-P dehydrogenase complexes in higher plant chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5617-24. [PMID: 12423361 DOI: 10.1046/j.1432-1033.2002.03269.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Light/dark modulation of the higher plant Calvin-cycle enzymes phosphoribulokinase (PRK) and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (NADP- GAPDH-A2B2) involves changes of their aggregation state in addition to redox changes of regulatory cysteines. Here we demonstrate that plants possess two different complexes containing the inactive forms (a) of NADP-GAPDH and PRK and (b) of only NADP-GAPDH, respectively, in darkened chloroplasts. While the 550-kDa PRK/GAPDH/CP12 complex is dissociated and activated upon reduction alone, activation and dissociation of the 600-kDa A8B8 complex of NADP-GAPDH requires incubation with dithiothreitol and the effector 1,3-bisphosphoglycerate. In the light, PRK is therefore completely in its activated state under all conditions, even in low light, while GAPDH activation in the light is characterized by a two-step mechanism with 60-70% activation under most conditions in the light, and the activation of the remaining 30-40% occurring only when 1,3-bisphosphoglycerate levels are strongly increasing. In vitro studies with the purified components and coprecipitation experiments from fresh stroma using polyclonal antisera confirm the existence of these two aggregates. Isolated oxidized PRK alone does not reaggregate after it has been purified in its reduced form; only in the presence of both CP12 and purified NADP-GAPDH, some of the PRK reaggregates. Recombinant GapA/GapB constructs form the A8B8 complex immediately upon expression in E. coli.
Collapse
Affiliation(s)
- Renate Scheibe
- Plant Physiology, University of Osnabrueck, Germany; Planton GmbH, Kiel, Germany
| | | | | | | | | |
Collapse
|
9
|
Bustos DM, Iglesias AA. Non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase is post-translationally phosphorylated in heterotrophic cells of wheat (Triticum aestivum). FEBS Lett 2002; 530:169-73. [PMID: 12387887 DOI: 10.1016/s0014-5793(02)03455-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In wheat, non-phosphorylating, NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPN) was found to be encoded by one gene giving rise to a single protein. However, Western blots revealed two different subunits of about 58 and 60 kDa in endosperm and shoots. The latter was attributed to in vivo phosphorylation of shoot GAPN. No modification occurred in leaves, where the enzyme is composed by a single 58 kDa polypeptide. GAPN partially purified from shoots and endosperm was dephosphorylated in vitro with alkaline phosphatase. Phosphorylated GAPN exhibited similar affinity for substrates but a lower V(max) compared to the non-phosphorylated enzyme. Results suggest that reversible phosphorylation of GAPN could regulate NADPH production in the cytosol of heterotrophic plant cells.
Collapse
Affiliation(s)
- Diego M Bustos
- Instituto Tecnológico de Chascomús (IIB-INTECH), Camino Circunv. Laguna km 6, Casilla de Correo 164, Chascomús 7130, Buenos Aires, Argentina
| | | |
Collapse
|
10
|
Sparla F, Pupillo P, Trost P. The C-terminal extension of glyceraldehyde-3-phosphate dehydrogenase subunit B acts as an autoinhibitory domain regulated by thioredoxins and nicotinamide adenine dinucleotide. J Biol Chem 2002; 277:44946-52. [PMID: 12270927 DOI: 10.1074/jbc.m206873200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulatory isoform of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a light-activated enzyme constituted by subunits GapA and GapB. The NADPH-dependent activity of regulatory GAPDH from spinach chloroplasts was affected by the redox potential (E(m,7.9), -353 +/- 11 mV) through the action of thioredoxin f. The redox dependence of recombinant GapB (E(m,7.9), -347 +/- 9 mV) was similar to native GAPDH, whereas GapA was essentially redox-insensitive. GapB mutants having one or two C-terminal cysteines mutated into serines (C358S, C349S, C349S/C358S) were less redox-sensitive than GapB. Different mutants with other cysteines substituted by serines (C18S, C274S, C285S) still showed strong redox regulation. Fully active GapB was a tetramer of B-subunits, and, when incubated with NAD, it associated to a high molecular weight oligomer showing low NADPH-dependent activity. The C-terminal GapB mutants (C358S, C349S, C349S/C358S) were active tetramers unable to aggregate to higher oligomers in the presence of NAD, whereas other mutants (C18S, C274S, C285S) again behaved like GapB. We conclude that a regulatory disulfide, between Cys-349 and Cys-358 of the C-terminal extension of GapB, does form in the presence of oxidized thioredoxin. This covalent modification is required for the NAD-dependent association into higher oligomers and inhibition of the NADPH-activity. By leading to GAPDH autoinhibition, thioredoxin and NAD may thus concur to the dark inactivation of the enzyme in vivo.
Collapse
Affiliation(s)
- Francesca Sparla
- Laboratory of Plant Physiology, Department of Biology, University of Bologna, Via Irnerio 42, Bologna I-40126, Italy
| | | | | |
Collapse
|
11
|
Iddar A, Valverde F, Serrano A, Soukri A. Expression, purification, and characterization of recombinant nonphosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Clostridium acetobutylicum. Protein Expr Purif 2002; 25:519-26. [PMID: 12182834 DOI: 10.1016/s1046-5928(02)00032-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Clostridium acetobutylicum gapN was cloned and expressed in Escherichia coli BL-21. The IPTG-induced nonphosphorylating NADP-dependent GAPDH (GAPN) has been purified about 34-fold from E. coli cells and its physical and kinetic properties were investigated. The purification method consisted of a rapid and straightforward procedure involving anion-exchange and hydroxyapatite chromatographies. The purified protein is an homotetrameric of 204kDa exhibiting absolute specificity for NADP. Chromatofocusing analysis showed the presence of only one acidic GAPN isoform with an acid isoelectric point of 4.2. The optimum pH of purified enzyme was 8.2. Studies on the effect of assay temperature on enzyme activity revealed an optimal value of about 65 degrees C with activation energy of 18KJmol(-1). The apparent K(m) values for NADP and D-glyceraldehyde-3-phosphate (D-G3P) or DL-G3P were estimated to be 0.200+/-0.05 and 0.545+/-0.1 mM, respectively. No inhibition was observed with L-D3P. The V(max) of the purified protein was estimated to be 78.8 U mg(-1). The Cl. acetobutylicum GAPN was markedly inhibited by sulfhydryl-modifying reagent iodoacetamide, these results suggest the participation of essential sulfhydryl groups in the catalytic activity.
Collapse
Affiliation(s)
- Abdelghani Iddar
- Laboratoire de BBCM, Département de Biologie, Faculté des Sciences Aïn-Chock, Université Hassan-II, Km 8 route d'El Jadida, B.P. 5366 Mâarif, Casablanca, Morocco
| | | | | | | |
Collapse
|
12
|
Balogh Á, Wong JH, Wötzel C, Soll J, Cséke C, Buchanan BB. Metabolite-mediated catalyst conversion of PFK and PFP: a mechanism of enyme regulation in green plants. FEBS Lett 2001. [DOI: 10.1016/0014-5793(84)80335-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Sesma JI, Iglesias AA. Structural and kinetic characterization of NADP-dependent, non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from celery leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2000; 154:107-115. [PMID: 10729609 DOI: 10.1016/s0168-9452(99)00241-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
NADP-dependent, non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) from celery leaves was purified over 1200-fold to a specific activity of 35 units/mg protein, and its kinetic, regulatory and structural properties were characterized. The purified enzyme exhibited a homotetrameric structure with a subunit molecular mass of 54 kDa. A high specificity of the enzyme for the substrates NADP(+) (K(m)=7 µM) and D-glyceraldehyde-3-phosphate (K(m)=127 µM) was observed. Maximal activity was determined at pH 8.5. The purified enzyme was highly unstable, requiring the addition of NADP(+) or conditions of high ionic strength in the medium. A hysteretic behavior, with a lag phase of minutes, was observed during activity measurement of the enzyme preincubated in the absence of substrates. The lag was inversely proportional to the protein concentration during preincubation. The hysteretic parameters were affected by the substrates, KCl and mannitol among other compounds. Distinctively, incubation with NADP(+) produced a near twofold activation of the enzyme. Results suggest that in alditol producing plants the enzyme plays a key role in the synthesis and partitioning of photoassimilates.
Collapse
|
14
|
|
15
|
Wang X, Sirover MA, Anderson LE. Pea chloroplast glyceraldehyde-3-phosphate dehydrogenase has uracil glycosylase activity. Arch Biochem Biophys 1999; 367:348-53. [PMID: 10395754 DOI: 10.1006/abbi.1999.1261] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pea (Pisum sativum) chloroplastic glyceraldehyde-3-P dehydrogenase (EC 1.2.1.13) was tested for uracil DNA glycosylase activity. It was found that both the chloroplast and the recombinant subunit B dehydrogenases remove uracil from poly(dA[3H]dU). The glycosylase activity of the recombinant subunit B enzyme and that of a truncated form corresponding in length to subunit A were associated with the dehydrogenase activity in gel-filtration experiments. Both activities of the chloroplast enzyme were inhibited by antisera raised against recombinant subunit B, and both activities of the recombinant subunit B enzyme were inhibited by antisera raised against pea chloroplast glyceraldehyde-3-P dehydrogenase. Antisera raised against Escherichia coli uracil glycosylase did not affect the glycosylase activity of the recombinant subunit B enzyme. The glycosylase pH activity profile of the chloroplast dehydrogenase was unique. It is distinct from the dehydrogenase pH activity profile and from the pH activity profiles of other plant glycosylases. The glycosylase activity, but not the dehydrogenase activity, of the recombinant subunit B enzyme was inhibited by uracil. Pyridine nucleotides stimulated the glycosylase activity. To our knowledge this is the first example of a nonhuman glyceraldehyde-3-P dehydrogenase, and of an NADP-dependent glyceraldehyde-3-P dehydrogenase, that exhibits uracil glycosylase activity.
Collapse
Affiliation(s)
- X Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, 60607, USA
| | | | | |
Collapse
|
16
|
Liaud MF, Brandt U, Scherzinger M, Cerff R. Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. J Mol Evol 1997; 44 Suppl 1:S28-37. [PMID: 9071009 DOI: 10.1007/pl00000050] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cryptomonads are complex microalgae which share characteristics of chromophytes (chlorophyll c, extra pair of membranes surrounding the plastids) and rhodophytes (phycobiliproteins). Unlike chromophytes, however, they contain a small nucleus-like organelle, the nucleomorph, in the periplastidial space between the inner and outer plastid membrane pairs. These cellular characteristics led to the suggestion that cryptomonads may have originated via a eukaryote-eukaryote endosymbiosis between a phagotrophic host cell and a unicellular red alga, a hypothesis supported by rRNA phylogenies. Here we characterized cDNAs of the nuclear genes encoding chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from the two cryptomonads Pyrenomonas salina and Guillardia theta. Our results suggest that in cryptomonads the classic Calvin cycle GAPDH enzyme of cyanobacterial origin, GapAB, is absent and functionally replaced by a photosynthetic GapC enzyme of proteobacterial descent, GapC1. The derived GapC1 precursor contains a typical signal/transit peptide of complex structure and sequence signatures diagnostic for dual cosubstrate specificity with NADP and NAD. In addition to this novel GapC1 gene a cytosol-specific GapC2 gene of glycolytic function has been found in both cryptomonads showing conspicuous sequence similarities to animal GAPDH. The present findings support the hypothesis that the host cell component of cryptomonads may be derived from a phototrophic rather than a organotrophic cell which lost its primary plastid after receiving a secondary one. Hence, cellular compartments of endosymbiotic origin may have been lost or replaced several times in eukaryote cell evolution, while the corresponding endosymbiotic genes (e.g., GapC1) were retained, thereby increasing the chimeric potential of the nuclear genome.
Collapse
Affiliation(s)
- M F Liaud
- Institut für Genetik, Universität Braunschweig, Germany
| | | | | | | |
Collapse
|
17
|
Baalmann E, Scheibe R, Cerff R, Martin W. Functional studies of chloroplast glyceraldehyde-3-phosphate dehydrogenase subunits A and B expressed in Escherichia coli: formation of highly active A4 and B4 homotetramers and evidence that aggregation of the B4 complex is mediated by the B subunit carboxy terminus. PLANT MOLECULAR BIOLOGY 1996; 32:505-13. [PMID: 8980499 DOI: 10.1007/bf00019102] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Chloroplast glyceraldehyde-3-phosphate dehydrogenase (phosphorylating, E.C. 1.2.1.13) (GAPDH) of higher plants exists as an A2B2 heterotetramer that catalyses the reductive step of the Calvin cycle. In dark chloroplasts the enzyme exhibits a molecular mass of 600 kDa, whereas in illuminated chloroplasts the molecular mass is altered in favor of the more active 150 kDa form. We have expressed in Escherichia coli proteins corresponding to the mature A and B subunits of spinach chloroplast GAPDH (GapA and GapB, respectively) in addition to a derivative of the B subunit lacking the GapB-specific C-terminal extension (CTE). One mg of each of the three proteins so expressed was purified to electrophoretic homogeneity with conventional methods. Spinach GapA purified from E. coli is shown to be a highly active homotetramer (50-70 U/mg) which does not associate under aggregating conditions in vitro to high-molecular-mass (HMM) forms of ca. 600 kDa. Since B4 forms of the enzyme have not been described from any source, we were surprised to find that spinach GapB purified from E. coli was active (15-35 U/mg). Spinach GapB lacking the CTE purified from E. coli is more highly active (130 U/mg) than GapB with the CTE. Under aggregating conditions, GapB lacking the CTE is a tetramer that does not associate to HMM forms whereas GapB with the CTE occurs exclusively as an aggregated HMM form. The data indicate that intertetramer association of chloroplast GAPDH in vitro occurs through GapB-mediated protein-protein interaction.
Collapse
Affiliation(s)
- E Baalmann
- Pflanzenphysiologie, FB 5 Biologie/Chemie, Universität Osnabrück, Germany
| | | | | | | |
Collapse
|
18
|
Scheibe R, Baalmann E, Backhausen JE, Rak C, Vetter S. C-terminal truncation of spinach chloroplast NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase prevents inactivation and reaggregation. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1296:228-34. [PMID: 8814230 DOI: 10.1016/0167-4838(96)00074-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chloroplast NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase (NAD(P)-GAPDH; EC 1.2.1.13) consists of two types of subunits: GapA and GapB, which are rather similar, except that GapB carries an unique C-terminal sequence extension. Here, we report evidence that this sequence extension might be responsible for aggregation and dark inactivation of the enzyme in vivo. Recently, it had been demonstrated that upon limited proteolysis of the purified 600 kDa enzyme, using the Staphylococcus aureus V8 endoproteinase (Zapponi et al. (1993) Biol. Chem. Hoppe-Seyler 374, 395-402), the C-terminus of GapB can be removed, giving rise to the 150 kDa form. Based on these findings, we analyzed the changed catalytic properties of the enzyme after proteolysis and its ability to reaggregate. The time-course of proteolysis is paralleled by a strong increase in enzyme activity and the appearance of the tetrameric enzyme form, the increase of apparent activity preceding disaggregation. The proteolyzed enzyme is characterized by its increased affinity towards the substrate 1,3-bisphosphoglycerate and thus resembles the fully activated intact enzyme. In contrast to the effector-mediated activation of the intact enzyme, both proteolytic activation and the resulting disaggregation of the high-molecular-weight form cannot be reversed, even by incubation with NAD.
Collapse
Affiliation(s)
- R Scheibe
- Fachbereich Biologie/Chemie, Universität Osnabrück, Germany
| | | | | | | | | |
Collapse
|
19
|
Laxalt AM, Cassia RO, Sanllorenti PM, Madrid EA, Andreu AB, Daleo GR, Conde RD, Lamattina L. Accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase RNA under biological stress conditions and elicitor treatments in potato. PLANT MOLECULAR BIOLOGY 1996; 30:961-72. [PMID: 8639754 DOI: 10.1007/bf00020807] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants respond to pathogen infection and environmental stress by regulating the coordinate expression of many stress-related genes. In plants, the expression of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is induced under environmental stress. This work was aimed at investigating whither the expression pattern of cytosolic GAPDH is also modulated upon infection of potato plants (Solanum tuberosum L.) with the late blight fungal agent Phytophthora infestans. Northern blot analysis showed the accumulation of the GAPDH gene transcripts in leaves and stems of inoculated potato plants. When tuber discs were treated with eicosapentaenoic acid (EPA), an elicitor found in P. infestans, GAPDH gene transcripts level increased. The increase was parallel to that of the hydroxymethyl glutharyl coenzyme A reductase (HMGR), an enzyme involved in pathogen defense reactions. Glucans obtained from P. infestans cell wall acts synergistically with EPA on GAPDH and HMGR gene induction. Salicylic acid, an endogenous signal for inducing systemic acquired resistance, was also effective in stimulating the GAPDH transcript accumulation in potato leaves. These experiments suggest that related multi-component factors, which are part of both primary and secondary metabolism, are probably regulated by similar signal transduction pathways when they are induced under biotic or abiotic stress conditions.
Collapse
Affiliation(s)
- A M Laxalt
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Meyer-Gauen G, Schnarrenberger C, Cerff R, Martin W. Molecular characterization of a novel, nuclear-encoded, NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase in plastids of the gymnosperm Pinus sylvestris L. PLANT MOLECULAR BIOLOGY 1994; 26:1155-66. [PMID: 7811973 DOI: 10.1007/bf00040696] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Angiosperms and algae possess two distinct glyceraldehyde-3-phosphate dehydrogenase (GAPDH) enzymes, an NAD(+)-dependent tetramer involved in cytosolic glycolysis and an NADP(+)-dependent enzyme of the Calvin cycle in chloroplasts. We have found that the gymnosperm Pinus sylvestris possesses, in addition to these, a nuclear-encoded, plastid-specific, NAD(+)-dependent GAPDH, designated GapCp, which has not previously been described from any plant. Several independent full-size cDNAs for this enzyme were isolated which encode a functional transit peptide and mature subunit very similar to that of cytosolic GAPDH of angiosperms and algae. A molecular phylogeny reveals that chloroplast GapCp and cytosolic GapC arose through gene duplication early in chlorophyte evolution. The GapCp gene is expressed as highly as that for GapC in light-grown pine seedlings. These findings suggest that aspects of compartmentalized sugar phosphate metabolism may differ in angiosperms and gymnosperms and furthermore underscore the contributions of endosymbiotic gene transfer and gene duplication to the nuclear complement of genes for enzymes of plant primary metabolism.
Collapse
Affiliation(s)
- G Meyer-Gauen
- Institut für Genetik, Technische Universität Braunschweig, FRG
| | | | | | | |
Collapse
|
21
|
Michels S, Scagliarini S, Della Seta F, Carles C, Riva M, Trost P, Branlant G. Arguments against a close relationship between non-phosphorylating and phosphorylating glyceraldehyde-3-phosphate dehydrogenases. FEBS Lett 1994; 339:97-100. [PMID: 8313985 DOI: 10.1016/0014-5793(94)80393-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Non-phosphorylating NADP-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (EC 1.2.1.9) from spinach leaves was purified to homogeneity using an improved purification procedure. Thus, a major contaminant with molecular mass and ion-exchange properties similar to non-phosphorylating GAPDH was eliminated. Using this pure non-phosphorylating GAPDH, cofactor stereospecificity was determined by 1H NMR. Analysis of the NADPH formed from the hydride transfer from glyceraldehyde-3-phosphate to [4-2H]NADP showed that the enzyme belongs to the A-stereospecific dehydrogenase family. This stereospecificity is the same as that described for the aldehyde dehydrogenase (ALDH) superfamily and opposite to that of the phosphorylating GAPDH. Moreover, results from peptide sequencing analysis suggest a similarity in sequence between the non-phosphorylating GAPDH and ALDHs. Thus, the results taken all together strongly suggest that non-phosphorylating GAPDH belongs to the ALDH family and has no close relationship to the phosphorylating GAPDH class.
Collapse
Affiliation(s)
- S Michels
- Laboratoire d'Enzymologie et de Génie Génétique, Université de Nancy I, URA CNRS 457, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Sand O, Petersen IM, Jørgen J, Iversen L. Purification and some properties of glyceraldehyde 3-phosphate dehydrogenase from Synechococcus sp. Antonie Van Leeuwenhoek 1994; 65:133-42. [PMID: 7979318 DOI: 10.1007/bf00871754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was purified 386 fold to apparent homogeneity from the thermophilic cyanobacterium Synechococcus sp. grown at optimum light intensities in batch cultures. The molecular mass of the tetrameric form of the enzyme was 160 kDa as determined by gel filtration and sucrose gradient centrifugation in a phosphate buffer containing DTT. The pH optimum for the oxidation of NADPH was broad (6-8) and the enzyme had a pI of 4.5. The turnover number was 36,000 min-1 at 40 degrees C. The activation energy was 12.4 Kcal for t > 29 degrees C and 20.6 Kcal for t < 29 degrees C. The specific absorption coefficient, A 1% 1cm 280 mm of the pure enzyme in phosphate buffer at pH 6.8 was 15.2. By SDS gel electrophoresis molecular masses of 78 kDa and 39 kDa were found, indicating that the purified enzyme is a tetramer, probably a homotetramer. When Tris was used as buffer in the homogenization and phosphate and DTT were omitted, a high molecular form with a molecular mass above 500 kDa was found. This form was less active than the purified tetrameric form. Acetone and other organic solvents stimulated the native enzyme several fold.
Collapse
Affiliation(s)
- O Sand
- Institute of Biochemistry, Odense University, Denmark
| | | | | | | |
Collapse
|
23
|
Serrano A, Mateos MI, Losada M. Differential regulation by trophic conditions of phosphorylating and non-phosphorylating NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenases in Chlorella fusca. Biochem Biophys Res Commun 1991; 181:1077-83. [PMID: 1764059 DOI: 10.1016/0006-291x(91)92047-n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The two NADP(+)-dependent glyceraldehyde-3-phosphate dehydrogenases present in the green alga Chlorella fusca, namely, the phosphorylating (chloroplastic) enzyme and the non-phosphorylating (cytosolic) enzyme, are differently affected by the trophic conditions prevailing in the cell cultures. The addition of metabolizable sugars to cell cultures growing in the light promotes a marked decrease of the phosphorylating enzyme activity down to a barely detectable cellular level. In contrast, the cellular level of the non-phosphorylating enzyme is even enhanced in the presence of such sugars. These effects are not observed, however, with a number of non-assimilable sugar analogs. After sugar removal, a recovery of the phosphorylating activity--in a process which is inhibited by cycloheximide but not by lincomycin--is observed in illuminated cells but not in darkness, thus indicating a light-dependent nuclear synthesis of the chloroplastic enzyme. It seems therefore that the two dehydrogenases are adaptative enzymes subject to differential regulation by nutritional conditions.
Collapse
Affiliation(s)
- A Serrano
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Spain
| | | | | |
Collapse
|
24
|
Clasper S, Easterby JS, Powls R. Properties of two high-molecular-mass forms of glyceraldehyde-3-phosphate dehydrogenase from spinach leaf, one of which also possesses latent phosphoribulokinase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:1239-46. [PMID: 1662608 DOI: 10.1111/j.1432-1033.1991.tb16496.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two high-Mr forms of chloroplast glyceraldehyde-3-phosphate dehydrogenase from spinach leaf can be separated by DEAE-cellulose chromatography. One form, the high-Mr glyceraldehyde-3-phosphate dehydrogenase, resembles an enzyme previously described [Yonuschot, G.R., Ortwerth, B.J. & Koeppe, O.J. (1970) J. Biol. Chem. 245, 4193-4198]. The other, a glyceraldehyde-3-phosphate dehydrogenase/phosphoribulokinase complex, is characterised by possession of latent phosphoribulokinase activity, only expressed following incubation with dithiothreitol. This complex is composed not only of subunits A (39.5 kDa) and B (41.5 kDa) characteristic of the high-Mr glyceraldehyde-3-phosphate dehydrogenase, but also of a third subunit, R (40.5 kDa) comigrating with that from the active phosphoribulokinase of spinach. Incubation of the complex with dithiothreitol markedly stimulated both its phosphoribulokinase and NADPH-dependent dehydrogenase activities. This dithiothreitol-induced activation was accompanied by depolymerisation to give two predominantly NADPH-linked tetrameric glyceraldehyde-3-phosphate dehydrogenases (the homotetramer, A4, and the heterotetramer, A2B2) as well as the active dimeric phosphoribulokinase. Incubation of the high-Mr glyceraldehyde-3-phosphate dehydrogenase with dithiothreitol promoted complete depolymerisation yielding only the heterotetramer (A2B2). Possible structures suggested for the glyceraldehyde-3-phosphate dehydrogenase/phosphoribulokinase complex are (A2B2)2A4R2 or (A2B2)(A4)2R2.
Collapse
Affiliation(s)
- S Clasper
- Department of Biochemistry, University of Liverpool, England
| | | | | |
Collapse
|
25
|
Sakai K, Hasumi K, Endo A. Two glyceraldehyde-3-phosphate dehydrogenase isozymes from the koningic acid (heptelidic acid) producer Trichoderma koningii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 193:195-202. [PMID: 2226438 DOI: 10.1111/j.1432-1033.1990.tb19323.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sesquiterpene lactone koningic acid (heptelidic acid) irreversibly inactivated glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde 3-phosphate: NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) (GAPDH) and thus inhibits glycolysis. The koningic-acid-producing strain of Trichoderma koningii M3947 was shown to contain the koningic-acid-resistant GAPDH isozyme (GAPDH I) under conditions of koningic acid production. In peptone-rich medium, however, no koningic acid production was observed, and the koningic-acid-sensitive GAPDH isozyme (GAPDH II), in addition to the resistant enzyme, was produced. Both enzymes were tetramer with a molecular mass of 152 kDa (4 x 38 kDa) and lost enzyme activity when two of the four cysteine residues reacted with koningic acid. The apparent Km values of GAPDH I and II for glyceraldehyde 3-phosphate were 0.54 mM and 0.33 mM, respectively. The former isozyme was inhibited 50% by 1 mM koningic acid but not affected at 0.1 mM, while the latter isozyme was inhibited 50% at 0.01 mM. The immunochemical properties and partial amino acid sequences suggested that the two isozymes have different molecular structures. These results suggest that GAPDH I is responsible for the glycolysis in T. koningii when koningic acid is produced.
Collapse
Affiliation(s)
- K Sakai
- Department of Applied Biological Science, Tokyo Noko University, Japan
| | | | | |
Collapse
|
26
|
Iglesias AA. On the metabolism of triose-phosphates in photosynthetic cells. Their involvement on the traffic of ATP and NADPH. ACTA ACUST UNITED AC 1990. [DOI: 10.1016/0307-4412(90)90003-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Iglesias AA, Losada M. Purification and kinetic and structural properties of spinach leaf NADP-dependent nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase. Arch Biochem Biophys 1988; 260:830-40. [PMID: 3341766 DOI: 10.1016/0003-9861(88)90514-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
NADP-dependent nonphosphorylating D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.9) from spinach leaves has been purified to apparent electrophoretic homogeneity by ammonium sulfate fractionation, molecular sieving on Sephadex G-200, DEAE-cellulose, and 2',5'-ADP-Sepharose affinity chromatography. The purified enzyme exhibited a specific activity of 15 mumol (mg protein)-1 min-1 and was characterized as a homotetramer with a native molecular weight of 195,000. Preincubation of the purified enzyme with NADP+ resulted in an almost twofold increase in enzymatic activity. The rate of activation was slower than the rate of catalysis, indicating that the enzyme has hysteretic properties. This behavior results in a lag phase during activity measurement of the enzyme preincubated without NADP+. Substrate interaction and product inhibition studies suggest a rapid equilibrium random BiBi mechanism for the reaction. Thiol modifying reagents, iodoacetamide and diamide, completely inactivated the purified enzyme. Inactivation by iodoacetamide exhibited pseudo-first-order kinetics with a rate constant of 0.17 min-1. D-Glyceraldehyde 3-phosphate effectively protected the enzyme against inactivation by thiol reagents, suggesting that modification occurred at or near the substrate-binding site. Complete inactivation of the dehydrogenase was correlated with incorporation of 8 mol [1-14C]iodoacetamide/mol enzyme. Total protection afforded by D-glyceraldehyde 3-phosphate against enzyme inactivation by iodoacetamide was correlated with a protection of 4 mol reactive residues/mol enzyme. On the basis of these results it is suggested that one sulfhydryl group per enzyme subunit is essential for catalysis in spinach leaf nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase. A kinetic and molecular mechanism for the reaction is proposed.
Collapse
Affiliation(s)
- A A Iglesias
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla, Spain
| | | |
Collapse
|
28
|
Hensel R, Laumann S, Lang J, Heumann H, Lottspeich F. Characterization of two D-glyceraldehyde-3-phosphate dehydrogenases from the extremely thermophilic archaebacterium Thermoproteus tenax. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 170:325-33. [PMID: 3121324 DOI: 10.1111/j.1432-1033.1987.tb13703.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thermoproteus tenax possesses two different glyceraldehyde-3-phosphate dehydrogenases, one specific for NADP+ and the other for NAD+. NADP(H) inhibits the NAD+-specific enzyme competetively with respect to NAD+ whereas NAD(H) virtually does not interact with the NADP+-specific enzyme. Both enzymes represent homomeric tetramers with subunit molecular masses of 39 kDa (NADP+-specific enzyme) and 49 kDa (NAD+-specific enzyme), respectively. The NADP+-specific enzyme shows significant homology to the known glyceraldehyde-3-phosphate dehydrogenases from eubacteria and eukaryotes as indicated by partial sequencing. The enzymes are thermostable, the NADP+-specific enzyme with a half-life of 35 min at 100 degrees C, the NAD+-specific enzyme with a half-line of greater than or equal to 20 min at 100 degrees C, depending on the protein concentration. Both enzymes show conformational and functional changes at 60-70 degrees C.
Collapse
Affiliation(s)
- R Hensel
- Max-Planck-Institut für Biochemie, Martinsried, Federal Republic of Germany
| | | | | | | | | |
Collapse
|
29
|
Ferri G, Stoppini M, Iadarola P, Carla Zapponi M, Galliano M, Minchiotti L. Structural characterization of the subunits of spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP). ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0167-4838(87)90294-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Iglesias AA, Serrano A, Guerrero MG, Losada M. Purification and properties of NADP-dependent non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase from the green alga Chlamydomonas reinhardtii. Biochim Biophys Acta Gen Subj 1987. [DOI: 10.1016/0304-4165(87)90141-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Fabry S, Hensel R. Purification and characterization of D-glyceraldehyde-3-phosphate dehydrogenase from the thermophilic archaebacterium Methanothermus fervidus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:147-55. [PMID: 3569291 DOI: 10.1111/j.1432-1033.1987.tb11205.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The D-glyceraldehyde-3-phosphate dehydrogenase from the extremely thermophilic archaebacterium Methanothermus fervidus was purified and crystallized. The enzyme is a homomeric tetramer (molecular mass of subunits 45 kDa). Partial sequence analysis shows homology to the enzymes from eubacteria and from the cytoplasm of eukaryotes. Unlike these enzymes, the D-glyceraldehyde-3-phosphate dehydrogenase from Methanothermus fervidus reacts with both NAD+ and NADP+ and is not inhibited by pentalenolactone. The enzyme is intrinsically stable up to 75 degrees C. It is stabilized by the coenzyme NADP+ and at high ionic strength up to about 90 degrees C. Breaks in the Arrhenius and Van't Hoff plots indicate conformational changes of the enzyme at around 52 degrees C.
Collapse
|
32
|
Nicholson S, Easterby JS, Powls R. Properties of a multimeric protein complex from chloroplasts possessing potential activities of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase and phosphoribulokinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 162:423-31. [PMID: 3026812 DOI: 10.1111/j.1432-1033.1987.tb10619.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A homogeneous multimeric protein isolated from the green alga, Scenedesmus obliquus, has both latent phosphoribulokinase activity and glyceraldehyde-3-phosphate dehydrogenase activity. The glyceraldehyde-3-phosphate dehydrogenase was active with both NADPH and NADH, but predominantly with NADH. Incubation with 20 mM dithiothreitol and 1 mM NADPH promoted the coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase, accompanied by a decrease in the glyceraldehyde-3-phosphate dehydrogenase activity linked to NADH. The multimeric enzyme had a Mr of 560,000 and was of apparent subunit composition 8G6R. R represents a subunit of Mr 42,000 conferring phosphoribulokinase activity and G a subunit of 39,000 responsible for the glyceraldehyde-3-phosphate dehydrogenase activity. On SDS-PAGE the Mr-42,000 subunit comigrates with the subunit of the active form of phosphoribulokinase whereas that of Mr-39,000 corresponds to that of NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. The multimeric enzyme had a S20,W of 14.2 S. Following activation with dithiothreitol and NADPH, sedimenting boundaries of 7.4 S and 4.4 S were formed due to the depolymerization of the multimeric protein to NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase (4G) and active phosphoribulokinase (2R). It has been possible to isolate these two enzymes from the activated preparation by DEAE-cellulose chromatography. Prolonged activation of the multimeric protein by dithiothreitol in the absence of nucleotide produced a single sedimenting boundary of 4.6 S, representing a mixture of the active form of phosphoribulokinase and an inactive dimeric form of glyceraldehyde-3-phosphate dehydrogenase. Algal thioredoxin, in the presence of 1 mM dithiothreitol and 1 mM NADPH, stimulated the depolymerization of the multimeric protein with resulting coactivation of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase. Light-induced depolymerization of the multimeric protein, mediated by reduced thioredoxin, is postulated as the mechanism of light activation in vivo. Consistent with such a postulate is the presence of high concentrations of the active forms of phosphoribulokinase and NADPH-dependent glyceraldehyde-3-phosphate dehydrogenase in extracts from photoheterotrophically grown algae. By contrast, in extracts from the dark-grown algae the multimeric enzyme predominates.
Collapse
|
33
|
Martin W, Cerff R. Prokaryotic features of a nucleus-encoded enzyme. cDNA sequences for chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from mustard (Sinapis alba). EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 159:323-31. [PMID: 3530755 DOI: 10.1111/j.1432-1033.1986.tb09871.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Two cDNA clones, encoding cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases (GAPDH) from mustard (Sinapis alba), have been identified and sequenced. Comparison of the deduced amino acid sequences with one another and with the GAPDH sequences from animals, yeast and bacteria demonstrates that nucleus-encoded subunit A of chloroplast GAPDH is distinct from its cytosolic counterpart and the other eukaryotic sequences and relatively similar to the GAPDHs of thermophilic bacteria. These results are compatible with the hypothesis that the nuclear gene for subunit A of chloroplast GAPDH is of prokaryotic origin. They are in puzzling contrast with a previous publication demonstrating that Escherichia coli GAPDH is relatively similar to the eukaryotic enzymes [Eur. J. Biochem. 150, 61-66 (1985)].
Collapse
|
34
|
Levy LM, Betts GF. The physiological significance of aggregation phenomena of NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from spinach chloroplasts. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0167-4838(85)90330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kirschenbaum DM. A compilation of amino acid analyses of proteins. XVIII. Residues per thousand residues--5. Appl Biochem Biotechnol 1983; 8:315-68. [PMID: 6679193 DOI: 10.1007/bf02779498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The amino acid analyses of 213 proteins, as residues per 1000 residues, are given. In addition, the carbohydrate content, the content of any noncommon amino acids, the sources of all proteins, and the necessary literature citations are given.
Collapse
|
36
|
Maurer KH, Pfeiffer F, Zehender H, Mecke D. Characterization of two glyceraldehyde-3-phosphate dehydrogenase isoenzymes from the pentalenolactone producer Streptomyces arenae. J Bacteriol 1983; 153:930-6. [PMID: 6822480 PMCID: PMC221716 DOI: 10.1128/jb.153.2.930-936.1983] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pentalenolactone (PL) irreversibly inactivates the enzyme glyceraldehyde-3-phosphate dehydrogenase [D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating)] (EC 1.2.1.12) and thus is a potent inhibitor of glycolysis in both procaryotic and eucaryotic cells. We showed that PL-producing strain Streptomyces arenae TU469 contains a PL-insensitive glyceraldehyde-3-phosphate dehydrogenase under conditions of PL production. In complex media no PL production was observed, and a PL-sensitive glyceraldehyde-3-phosphate dehydrogenase, rather than the insensitive enzyme, could be detected. The enzymes had the same substrate specificity but different catalytic and molecular properties. The apparent Km values of the PL-insensitive and PL-sensitive enzymes for glyceraldehyde-3-phosphate were 100 and 250 microM, respectively, and the PL-sensitive enzyme was strongly inhibited by PL under conditions in which the PL-insensitive enzyme was not inhibited. The physical properties of the PL-insensitive enzyme suggest that the protein is an octamer, whereas the PL-sensitive enzyme, like other glyceraldehyde-3-phosphate dehydrogenases, appears to be a tetramer.
Collapse
|
37
|
|
38
|
Cerff R. Evolutionary divergence of chloroplast and cytosolic glyceraldehyde-3-phosphate dehydrogenases from angiosperms. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 126:513-5. [PMID: 7140744 DOI: 10.1111/j.1432-1033.1982.tb06810.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Extracts from 13 different angiosperm species (spinach, mustard, pea, bean, tomato, cucumber, pumpkin, maize, sorghum, rye, wheat, oats, barley) were submitted to electrophoresis under nondenaturing conditions and stained for enzyme activities of cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases by a modified tetrazolium test of high sensitivity. Zymograms of the cytosolic enzyme revealed a single band of similar electrophoretic mobility for all but one species, the tomato, which displayed an ordered set of five different bands. In contrast, zymograms of the chloroplast dehydrogenase are highly different, containing between two and five distinct bands of variable electrophoretic mobilities according to the plant species examined. This variability of the native chloroplast enzyme is paralleled by a remarkable interspecific heterogeneity of the enzyme with respect to subunit size and number, as shown by dodecylsulfate electrophoresis of the purified chloroplast enzyme from 11 different angiosperm species. The present data suggest that cytosolic and chloroplast glyceraldehyde-3-phosphate dehydrogenases belong to two separate protein families of different evolutionary rate. While the cytosolic enzyme is probably an extremely conservative protein like the corresponding enzymes from animals, yeast and bacteria, the chloroplast enzyme seems to change rather rapidly during evolution.
Collapse
|
39
|
|
40
|
Pupillo P, Del Grosso E. A possible plasma membrane particle containing malic enzyme activity. PLANTA 1981; 151:506-511. [PMID: 24302201 DOI: 10.1007/bf00387427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/1980] [Accepted: 12/18/1980] [Indexed: 06/02/2023]
Abstract
A definite membrane fraction from Cucurbita hypocotyls, maize coleoptiles, and other plant tissues contains a NADP-dependent malic enzyme activity, up to 10% of overall tissue activity, and probably other soluble proteins. This "malic enzyme particle" is identified as plasmalemma on the basis of sedimentation behavior, density distribution in sucrose gradients, in comparison with enzyme markers, and sluggish penetration by the sugar Metrizamide. Enzyme binding to the plasma membrane is stable and scarcely sensitive to salts and EDTA, although all activity is released to the supernatant in the presence of Triton-X-100 or under hypotonic conditions. The properties of bound enzyme are similar to those of free enzyme in cell extracts. It is proposed that osmotically sensitive plasma membrane vesicles, containing cytoplasm fragments, are formed during homogenization. Low malic enzyme activities are also associated with Cucurbita proplastids.
Collapse
Affiliation(s)
- P Pupillo
- Istituto Botanico, Università di Bologna, Via Irnerio 42, I-40126, Bologna, Italy
| | | |
Collapse
|
41
|
Mann K, Mecke D. Inhibition of spinach glyceraldehyde-3-phosphate dehydrogenases by pentalenolactone. Nature 1979. [DOI: 10.1038/282535a0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|