1
|
Yang R, Wang M, Feng X, Gu Z, Wang P. AMADH inhibitor optimization and its effects on GABA accumulation in soybean sprouts under NaCl-CaCl 2 treatment. 3 Biotech 2019; 9:184. [PMID: 31065484 PMCID: PMC6476893 DOI: 10.1007/s13205-019-1715-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/12/2019] [Indexed: 10/27/2022] Open
Abstract
ABSTRACT 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide (EDC) was the suitable inhibitor for aminoaldehyde dehydrogenase (AMADH) compared with N-ethylmaleimide (NEE) and iodoacetamide (IAM). EDC exhibited the most obvious inhibition effect on AMADH activity, while its inhibition on glutamate decarboxylase (GAD) was insignificant. Compared with the control, AMADH activity reduced by 70.4% with 0.5 mM EDC, and γ-aminobutyric acid (GABA) content declined by 44.3% in soybean sprouts at 4 days of germination. AMADH activity reduced by 80.62, 67.61 and 72.02% in the 4-day sprouts with 1 mM EDC under NaCl, CaCl2 and NaCl + CaCl2 treatment, respectively, and GABA content decreased by 43.56, 38.84 and 35.53%, respectively. EDC is a proper inhibitor for AMADH and it could be used to quantify the contribution of polyamine degradation pathway on GABA formation. In soybean sprouts, the presence of CaCl2 under NaCl stress decreased the contribution of polyamine degradation pathway on GABA accumulation. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mian Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xiaoyun Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
2
|
Lv H, Sahin N, Tani A. Isolation and genomic characterization ofNovimethylophilus kurashikiensisgen. nov. sp. nov., a new lanthanide-dependent methylotrophic species ofMethylophilaceae. Environ Microbiol 2018; 20:1204-1223. [DOI: 10.1111/1462-2920.14062] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Haoxin Lv
- Institute of Plant Science and Resources, Okayama University; Okayama Japan
| | - Nurettin Sahin
- Egitim Fakultesi, Mugla Sitki Kocman University; 48170 Kotekli, Mugla Turkey
| | - Akio Tani
- Institute of Plant Science and Resources, Okayama University; Okayama Japan
| |
Collapse
|
3
|
Keltjens JT, Pol A, Reimann J, Op den Camp HJM. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 2014; 98:6163-83. [PMID: 24816778 DOI: 10.1007/s00253-014-5766-8] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 01/06/2023]
Abstract
Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.
Collapse
Affiliation(s)
- Jan T Keltjens
- Department of Microbiology, Institute of Wetland and Water Research, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
4
|
Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG. Global Molecular Analyses of Methane Metabolism in Methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: Transcriptomic Study. Front Microbiol 2013; 4:40. [PMID: 23565111 PMCID: PMC3615186 DOI: 10.3389/fmicb.2013.00040] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 02/17/2013] [Indexed: 11/20/2022] Open
Abstract
Methane utilizing bacteria (methanotrophs) are important in both environmental and biotechnological applications, due to their ability to convert methane to multicarbon compounds. However, systems-level studies of methane metabolism have not been carried out in methanotrophs. In this work we have integrated genomic and transcriptomic information to provide an overview of central metabolic pathways for methane utilization in Methylosinus trichosporium OB3b, a model alphaproteobacterial methanotroph. Particulate methane monooxygenase, PQQ-dependent methanol dehydrogenase, the H4MPT-pathway, and NAD-dependent formate dehydrogenase are involved in methane oxidation to CO2. All genes essential for operation of the serine cycle, the ethylmalonyl-CoA (EMC) pathway, and the citric acid (TCA) cycle were expressed. PEP-pyruvate-oxaloacetate interconversions may have a function in regulation and balancing carbon between the serine cycle and the EMC pathway. A set of transaminases may contribute to carbon partitioning between the pathways. Metabolic pathways for acquisition and/or assimilation of nitrogen and iron are discussed.
Collapse
Affiliation(s)
- Janet B Matsen
- Department of Chemical Engineering, University of Washington Seattle, WA, USA
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Li X, Wang X, Zhao K, Zhou Z, Zhao C, Yan R, Lin L, Lei T, Yin J, Wang R, Feng X, Liu S. A novel approach for identifying the heme-binding proteins from mouse tissues. GENOMICS PROTEOMICS & BIOINFORMATICS 2005; 1:78-86. [PMID: 15626337 PMCID: PMC5172403 DOI: 10.1016/s1672-0229(03)01011-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heme is a key cofactor in aerobic life, both in eukaryotes and prokaryotes. Because of the high reactivity of ferrous protoporphyrin IX, the reactions of heme in cells are often carried out through heme-protein complexes. Traditionally studies of heme-binding proteins have been approached on a case by case basis, thus there is a limited global view of the distribution of heme-binding proteins in different cells or tissues. The procedure described here is aimed at profiling heme-binding proteins in mouse tissues sequentially by 1) purification of heme-binding proteins by heme-agarose, an affinity chromatographic resin; 2) isolation of heme-binding proteins by SDS-PAGE or two-dimensional electrophoresis; 3) identification of heme-binding proteins by mass spectrometry. In five mouse tissues, over 600 protein spots were visualized on 2DE gel stained by Commassie blue and 154 proteins were identified by MALDI-TOF, in which most proteins belong to heme related. This methodology makes it possible to globally characterize the heme-binding proteins in a biological system.
Collapse
|
7
|
Zahn JA, Bergmann DJ, Boyd JM, Kunz RC, DiSpirito AA. Membrane-associated quinoprotein formaldehyde dehydrogenase from Methylococcus capsulatus Bath. J Bacteriol 2001; 183:6832-40. [PMID: 11698372 PMCID: PMC95524 DOI: 10.1128/jb.183.23.6832-6840.2001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2001] [Accepted: 09/11/2001] [Indexed: 11/20/2022] Open
Abstract
A membrane-associated, dye-linked formaldehyde dehydrogenase (DL-FalDH) was isolated from the obligate methylotroph Methylococcus capsulatus Bath. The enzyme was the major formaldehyde-oxidizing enzyme in cells cultured in high (above 1 micromol of Cu per mg of cell protein) copper medium and expressing the membrane-associated methane monooxygenase. Soluble NAD(P)(+)-linked formaldehyde oxidation was the major activity in cells cultured in low-copper medium and expressing the soluble methane monooxygenase (Tate and Dalton, Microbiology 145:159-167, 1999; Vorholt et al., J. Bacteriol. 180:5351-5356, 1998). The membrane-associated enzyme is a homotetramer with a subunit molecular mass of 49,500 Da. UV-visible absorption, electron paramagnetic resonance, and electrospray mass spectrometry suggest the redox cofactor of the DL-FalDH is pyrroloquinoline quinone (PQQ), with a PQQ-to-subunit stochiometry of approximately 1:1. The enzyme was specific for formaldehyde, oxidizing formaldehyde to formate, and utilized the cytochrome b(559/569) complex as the physiological electron acceptor.
Collapse
Affiliation(s)
- J A Zahn
- Department of Microbiology, Iowa State University, 205 Science Building, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
8
|
Klein CR, Kesseler FP, Perrei C, Frank J, Duine JA, Schwartz AC. A novel dye-linked formaldehyde dehydrogenase with some properties indicating the presence of a protein-bound redox-active quinone cofactor. Biochem J 1994; 301 ( Pt 1):289-95. [PMID: 8037683 PMCID: PMC1137174 DOI: 10.1042/bj3010289] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dye-linked formaldehyde dehydrogenase from methylamine-grown Hyphomicrobium zavarzinii ZV 580, a tetramer of M(r) 210,000 with subunits of M(r) 54,000, was purified to homogeneity in five steps with 10% yield. The enzyme shows optimal affinity for, and activity with, formaldehyde (Km 67 microM) compared with other aldehydes. Pyridoxal phosphate, pyrroloquinoline quinone and other cofactors that would give the enzyme a distinctive absorption spectrum are absent. Slight changes are observed in the spectrum at 300-550 nm on oxidation of the enzyme with Wurster's Blue (WB) and reduction with formaldehyde. Titration of the native reduced enzyme with WB accounts for 2 mol of electrons per mol of tetrameric enzyme. The circumstantial evidence supporting the presence of a redox-active quinone cofactor bound to the polypeptide chain comprises a signal at g = 2.0049 in the X-band e.p.r. spectrum of the enzyme oxidized with WB, which disappears on reduction with formaldehyde, and a positive reaction of the native as well as the denatured and dialysed enzyme in the redox-cycling assay with glycinate and NitroBlue Tetrazolium (quinone staining). The oxidized enzyme is inhibited by equimolar amounts of phenylhydrazine, which is also a reductant. Hydrazone formation was absent with completely inhibited enzyme, according to photometric evidence. Likewise, the glycinate-dependent reduction of NitroBlue Tetrazolium was not affected by the inhibitor. It is concluded that an oxidation product of the hydrazine is the actual inhibitor which reacts with an amino acid residue of the active site rather than with the prospective quinone cofactor.
Collapse
Affiliation(s)
- C R Klein
- Botanisches Institut, Universität Bonn, Germany
| | | | | | | | | | | |
Collapse
|
9
|
van Ophem PW, Duine JA. Microbial alcohol, aldehyde and formate ester oxidoreductases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 328:605-20. [PMID: 8493939 DOI: 10.1007/978-1-4615-2904-0_63] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P W van Ophem
- Delft University of Technology, Department of Microbiology & Enzymology, The Netherlands
| | | |
Collapse
|
10
|
Van Ophem PW, Bystrykh LV, Duine JA. Dye-linked dehydrogenase activities for formate and formate esters in Amycolatopsis methanolica. Characterization of a molybdoprotein enzyme active with formate esters and aldehydes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 206:519-25. [PMID: 1597191 DOI: 10.1111/j.1432-1033.1992.tb16955.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell-free extracts of methanol-grown Amycolatopsis methanolica contain dye-linked dehydrogenase activities for formate and methyl formate. Fractionation of the extracts revealed that the (unstable) activity for formate resides in membrane particles, while that for methyl formate belongs to a soluble enzyme that was purified and characterized. The enzyme, indicated as formate-ester dehydrogenase, appeared to be a molybdoprotein (4 Fe, 3 or 4 S, 1 Mo and 1 FAD were found for each enzyme molecule), with a molecular mass of 186 kDa and consisting of two subunits of equal size. Product identification suggests that the formate moiety in the ester becomes hydroxylated to a carbonate group after which the unstable alkyl carbonate decomposes into CO2 and the alcohol moiety. Based on structural and catalytic characteristics, the enzyme appears to be very similar to an enzyme isolated from Comamonas testosteroni [Poels, P. A., Groen, B. W. & Duine, J. A. (1987) Eur. J. Biochem. 166, 575-579] which was at that time considered to be an aldehyde dehydrogenase. Formate-ester dehydrogenase activity appeared to be present in several other bacteria. Possible roles for the A. methanolica enzyme in C1 dissimilation (oxidation of methyl formate to methanol and CO2 or a factor-formate adduct to factor plus CO2) or in general aldehyde oxidation, are discussed.
Collapse
Affiliation(s)
- P W Van Ophem
- Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands
| | | | | |
Collapse
|
11
|
The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium, Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. Evidence for its participation in a unique glycolytic pathway. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)98669-2] [Citation(s) in RCA: 200] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Van Ophem PW, Duine JA. Different types of formaldehyde-oxidizing dehydrogenases in Nocardia species 239: purification and characterization of an NAD-dependent aldehyde dehydrogenase. Arch Biochem Biophys 1990; 282:248-53. [PMID: 2241149 DOI: 10.1016/0003-9861(90)90113-d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three different dehydrogenases able to oxidize formaldehyde were found in the Gram-positive methylotroph, Nocardia sp. 239: an NAD-dependent aldehyde dehydrogenase (NA-ADH), and NAD- and factor-dependent formaldehyde dehydrogenase (FD-FDH), and a dye-linked aldehyde dehydrogenase (DL-ADH). The ratio of the activities observed for the two NAD-linked enzymes varied with growth conditions: batch-wise grown cells had nearly the same activities for both enzymes; in fed batch-wise grown cells (methanol limitation) only FD-FDH was detected. The latter is clearly involved in formaldehyde oxidation, since the enzyme and the factor were found only in methanol-grown cells and the enzyme is specific for formaldehyde. In contrast, the two aldehyde dehydrogenases may have significance for aldehyde dissimilation in general, since both activities could also be demonstrated in ethanol-grown cells (but not in glucose-grown cells) and higher aldehydes are even better substrates than formaldehyde. NA-ADH was purified to homogeneity. The enzyme seems to be a homotetramer since it showed a relative molecular mass of 200,000 and the denaturated form of 55,000. Other characteristics are as follows: the enzyme showed substrate inhibition for the aldehydes tested; optimal activity was found at pH 9.2; the reverse reaction was not observed; the enzyme was specific for NAD; GSH, K+, or NH4+ addition did not stimulate formaldehyde oxidation; the order of NAD and substrate addition to the enzyme was not important; several compounds able to block SH groups were inhibitory. Comparison with NAD-linked aldehyde dehydrogenases from Gram-negative bacteria showed that the Nocardia enzyme is distinct from the enzyme of Pseudomonas putida (EC 1.2.1.46) and of Hyphomicrobium X.
Collapse
Affiliation(s)
- P W Van Ophem
- Department of Microbiology and Enzymology, Delft University of Technology, The Netherlands
| | | |
Collapse
|
13
|
Yan RT, Chen JS. Coenzyme A-acylating aldehyde dehydrogenase from Clostridium beijerinckii NRRL B592. Appl Environ Microbiol 1990; 56:2591-9. [PMID: 2275527 PMCID: PMC184801 DOI: 10.1128/aem.56.9.2591-2599.1990] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acetaldehyde and butyraldehyde are substrates for alcohol dehydrogenase in the production of ethanol and 1-butanol by solvent-producing clostridia. A coenzyme A (CoA)-acylating aldehyde dehydrogenase (ALDH), which also converts acyl-CoA to aldehyde and CoA, has been purified under anaerobic conditions from Clostridium beijerinckii NRRL B592. The ALDH showed a native molecular weight (Mr) of 100,000 and a subunit Mr of 55,000, suggesting that ALDH is dimeric. Purified ALDH contained no alcohol dehydrogenase activity. Activities measured with acetaldehyde and butyraldehyde as alternative substrates were copurified, indicating that the same ALDH can catalyze the formation of both aldehydes for ethanol and butanol production. Based on the Km and Vmax values for acetyl-CoA and butyryl-CoA, ALDH was more effective for the production of butyraldehyde than for acetaldehyde. ALDH could use either NAD(H) or NADP(H) as the coenzyme, but the Km for NAD(H) was much lower than that for NADP(H). Kinetic data suggest a ping-pong mechanism for the reaction. ALDH was more stable in Tris buffer than in phosphate buffer. The apparent optimum pH was between 6.5 and 7 for the forward reaction (the physiological direction; aldehyde forming), and it was 9.5 or higher for the reverse reaction (acyl-CoA forming). The ratio of NAD(H)/NADP(H)-linked activities increased with decreasing pH. ALDH was O2 sensitive, but it could be protected against O2 inactivation by dithiothreitol. The O2-inactivated enzyme could be reactivated by incubating the enzyme with CoA in the presence or absence of dithiothreitol prior to assay.
Collapse
Affiliation(s)
- R T Yan
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg 24061
| | | |
Collapse
|
14
|
Poels PA, Groen BW, Duine JA. NAD(P)+-independent aldehyde dehydrogenase from Pseudomonas testosteroni. A novel type of molybdenum-containing hydroxylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 166:575-9. [PMID: 3609027 DOI: 10.1111/j.1432-1033.1987.tb13552.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Aldehyde dehydrogenase from Pseudomonas testosteroni was purified to homogeneity. The enzyme has a pH optimum of 8.2, uses a wide range of aldehydes as substrates and cationic dyes (Wurster's blue, phenazine methosulphate and thionine), but not anionic dyes (ferricyanide and 2.6-dichloroindophenol), NAD(P)+ or O2, as electron acceptors. Haem c and pyrroloquinoline quinone appeared to be absent but the common cofactors of molybdenum hydroxylases were present. Xanthine was not a substrate and allopurinol was not an inhibitor. Alcohols were inhibitors only when turnover of the enzyme occurred in aldehyde conversion. The enzyme has a relative molecular mass of 186,000, consists of two subunits of equal size (Mr 92,000), and 1 enzyme molecule contains 1 FAD, 1 molybdopterin cofactor, 4 Fe and 4 S. It is a novel type of NAD(P)+-independent aldehyde dehydrogenase since its catalytic and physicochemical properties are quite different from those reported for already known aldehyde-converting enzymes like haemoprotein aldehyde dehydrogenase (EC 1.2.99.3), quino-protein alcohol dehydrogenases (EC 1.1.99.8) and molybdenum hydroxylases.
Collapse
|
15
|
Enzyme Nomenclature. Recommendations 1978. Supplement 4: corrections and additions. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 131:461-72. [PMID: 6840060 DOI: 10.1111/j.1432-1033.1983.tb07285.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
16
|
Hou C, Patel R, Barnabe N. Identification of an NADH-linked formaldehyde-reducing enzyme from methanol-grownPichia pastorisNRRL Y-7556. FEMS Microbiol Lett 1982. [DOI: 10.1111/j.1574-6968.1982.tb00059.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
17
|
Higgins IJ, Best DJ, Scott D. Generation of products by methanotrophs. BASIC LIFE SCIENCES 1982; 19:383-402. [PMID: 6802126 DOI: 10.1007/978-1-4684-4142-0_29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
|
18
|
|
19
|
HIGGINS IJ, BEST DJ, HAMMOND RC. Fortuitous oxidations by methane-utilizing bacteria (reply). Nature 1981. [DOI: 10.1038/291169b0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|