Kanazawa H, Noumi T, Oka N, Futai M. Intracistronic mapping of the defective site and the biochemical properties of beta subunit mutants of Escherichia coli H+-ATPase: correlation of structural domains with functions of the beta subunit.
Arch Biochem Biophys 1983;
227:596-608. [PMID:
6320730 DOI:
10.1016/0003-9861(83)90489-7]
[Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sixteen mutants of Escherichia coli defective in H+-ATPase (proton-translocating ATPase) were tested for their ability to recombine with hybrid plasmids carrying various portions of the beta subunit cistron. Twelve mutations were mapped within the carboxyl half of the cistron corresponding to amino acid residues 279 to 459 (domain II), while four mutations were mapped within residues 17 to 278 (domain I). The biochemical properties of these mutants were analyzed in terms of the proton permeability of their membranes and the assembly properties of their F1F0 complex. The mutants were classified according to the properties into three types, I, II, and III. In 12 mutants of type I, proton conduction in membrane vesicles was blocked and little F1 was released from the membranes under conditions in which F1 could be released from wild-type membranes, suggesting that assembly of the F1F0 complex is structurally and functionally defective. F1 was partially purified with very low recovery from one of the type I mutants, KF16. ATPase activity was reconstituted from this F1 with the beta subunit of the wild type, confirming the genetic results. Only one mutant, KF38, was classified as type II. Its membranes were partially leaky to protons and its F1 was releasable, suggesting that the interaction of its F1 and F0 was unstable. Type III mutants, KF11 and KF43, had an F1F0 complex with very low activity, in which the structure of F1 was relatively similar to that of the wild type. F1 was purified as a single complex from KF43 in this study and from KF11 previously (H. Kanazawa, Y. Horiuchi, M. Takagi, Y. Ishino, and M. Futai (1980) J. Biochem. 88, 695-703). Reconstitution experiments in vitro showed that the F1's of both mutants were defective in the beta subunit. The properties of the altered F1 of KF43 differed from those of F1 of KF11, suggesting that the mutation sites of KF43 and KF11 were different. From the results of mapping mutation sites and the biochemical properties of the mutants, the correlation of structural domains with function of the beta subunit is discussed. Most type I and type II mutations except that of KF39 were mapped in domain II, while the type III mutations were mapped in domain I, suggesting that domain II is more important than domain I for the function of the beta subunit, especially in terms of proper assembly of the F1F0 complex.
Collapse