1
|
Masuoka J, Hazen KC. Cell wall mannan and cell surface hydrophobicity in Candida albicans serotype A and B strains. Infect Immun 2004; 72:6230-6. [PMID: 15501748 PMCID: PMC523023 DOI: 10.1128/iai.72.11.6230-6236.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cell surface hydrophobicity contributes to the pathogenesis of the opportunistic fungal pathogen Candida albicans. Previous work demonstrated a correlation between hydrophobicity status and changes in the acid-labile, phosphodiester-linked beta-1,2-oligomannoside components of the N-linked glycans of cell wall mannoprotein. Glycan composition also defines the two major serotypes, A and B, of C. albicans strains. Here, we show that the cell surface hydrophobicity of the two serotypes is qualitatively different, suggesting that the serotypes may differ in how they modulate cell surface hydrophobicity status. The cell wall mannoproteins from hydrophilic and hydrophobic cells of both serotypes were compared to determine whether the glycan differences due to serotype affect the glycan differences due to hydrophobicity status. Composition analysis showed that the protein, hexose, and phosphate contents of the mannoprotein fraction did not differ significantly among the strains tested. Electrophoretic profiles of the acid-labile mannan differed only with hydrophobicity status, not serotype, though some strain-specific differences were observed. Furthermore, a newly available beta-1,2-oligomannoside ladder allowed unambiguous identification of acid-labile mannan components. Finally, to assess whether the acid-stable mannan also affects cell surface hydrophobicity status, this fraction was fragmented into its component branches by acetolysis. The electrophoretic profiles of the acid-stable branches were very similar regardless of hydrophobicity status. However, differences were observed between serotypes. These results support and extend our current model that modification of the acid-labile beta-1,2-oligomannoside chain length but not modification of the acid-stable region is one common mechanism by which switching of cell surface hydrophobicity status of C. albicans strains occurs.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia Health System, Charlottesville 22908-0904, USA.
| | | |
Collapse
|
2
|
Masuoka J. Surface glycans of Candida albicans and other pathogenic fungi: physiological roles, clinical uses, and experimental challenges. Clin Microbiol Rev 2004; 17:281-310. [PMID: 15084502 PMCID: PMC387410 DOI: 10.1128/cmr.17.2.281-310.2004] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although fungi have always been with us as commensals and pathogens, fungal infections have been increasing in frequency over the past few decades. There is a growing body of literature describing the involvement of carbohydrate groups in various aspects of fungal disease. Carbohydrates comprising the cell wall or capsule, or as a component of glycoproteins, are the fungal cell surface entities most likely to be exposed to the surrounding environment. Thus, the fungus-host interaction is likely to involve carbohydrates before DNA, RNA, or even protein. The interaction between fungal and host cells is also complex, and early studies using whole cells or crude cell fractions often produced seemingly conflicting results. What was needed, and what has been developing, is the ability to identify specific glycan structures and determine how they interact with immune system components. Carbohydrate analysis is complicated by the complexity of glycan structures and by the challenges of separating and detecting carbohydrates experimentally. Advances in carbohydrate chemistry have enabled us to move from the foundation of composition analysis to more rapid characterization of specific structures. This, in turn, will lead to a greater understanding of how fungi coexist with their hosts as commensals or exist in conflict as pathogens.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia, Charlottesville, Virginia 22908-0904, USA.
| |
Collapse
|
3
|
Abe S, Shimizu Y, Ohtsuki J, Ohkubo Y. A possible mechanism for the exchange of transferrin-67Ga complex to heparan sulfate-67Ga complex. Biol Pharm Bull 2002; 25:1209-11. [PMID: 12230119 DOI: 10.1248/bpb.25.1209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We attempted to identify the exchange mechanism of transferrin-67Ga complex to heparan sulfate-67Ga complex. The effect of phosphate on the binding ability of 67Ga to transferrin and heparan sulfate was studied by the dialysis method. The phosphate inhibited the binding ability of 67Ga to transferrin, while the phosphate enhanced the 67Ga binding ability to heparan sulfate. The results suggest that the phosphate is involved in the translocation of 67Ga from the transferrin to the heparan sulfate.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Radiopharmacy, Tohoku Pharmaceutical University, Sendai, Japan.
| | | | | | | |
Collapse
|
4
|
Hazen KC, Wu JG, Masuoka J. Comparison of the hydrophobic properties of Candida albicans and Candida dubliniensis. Infect Immun 2001; 69:779-86. [PMID: 11159968 PMCID: PMC97952 DOI: 10.1128/iai.69.2.779-786.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Candida dubliniensis is a close genetic relative of Candida albicans, it colonizes and infects fewer sites. Nearly all instances of candidiasis caused by C. dubliniensis are restricted to the oral cavity. As cell surface hydrophobicity (CSH) influences virulence of C. albicans, CSH properties of C. dubliniensis were investigated and compared to C. albicans. Growth temperature is one factor which affects the CSH status of stationary-phase C. albicans. However, C. dubliniensis, similar to other pathogenic non-albicans species of Candida, was hydrophobic regardless of growth temperature. For all Candida species tested in this study (C. albicans, C. dubliniensis, C. glabrata, C. krusei, C. parapsilosis, and C. tropicalis), CSH status correlated with coaggregation with the anaerobic oral bacterium Fusobacterium nucleatum. Previous studies have shown that CSH status of C. albicans involves multiple surface proteins and surface protein N-glycans. The hydrophobic surface glycoprotein CAgp38 appears to be expressed by C. albicans constitutively regardless of growth temperature and medium. C. dubliniensis expresses a 38-kDa protein that cross-reacts with the anti-CAgp38 monoclonal antibody; however, expression of the protein was growth medium and growth temperature dependent. The anti-CAgp38 monoclonal antibody has been shown to inhibit adhesion of C. albicans to extracellular matrix proteins and to vascular endothelial cells. Since protein glycosylation influences the CSH status of C. albicans, we compared the cell wall mannoprotein content and composition between C. albicans and C. dubliniensis. Similar bulk compositional levels of hexose, phosphate, and protein in their N-glycans were determined. However, a component of the C. albicans N-glycan, acid-labile phosphooligomannoside, is expressed much less or negligibly by C. dubliniensis, and when present, the oligomannosides are predominantly less than five mannose residues in length. In addition, the acid-labile phosphooligomannoside profiles varied among the three strains of C. dubliniensis we tested, indicating the N-glycan of C. dubliniensis differs from C. albicans. For C. albicans, the acid-labile phosphooligomannoside influences virulence and surface fibrillar conformation, which affects exposure of hydrophobic surface proteins. Given the combined role in C. albicans of expression of specific surface hydrophobic proteins in pathogenesis and of surface protein glycosylation on exposure of the proteins, the lack of these virulence-associated CSH entities in C. dubliniensis could contribute to its limited ability to cause disseminated infections.
Collapse
Affiliation(s)
- K C Hazen
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
5
|
Iung AR, Coulon J, Kiss F, Ekome JN, Vallner J, Bonaly R. Mitochondrial function in cell wall glycoprotein synthesis in Saccharomyces cerevisiae NCYC 625 (Wild type) and [rho(0)] mutants. Appl Environ Microbiol 1999; 65:5398-402. [PMID: 10583995 PMCID: PMC91735 DOI: 10.1128/aem.65.12.5398-5402.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/1999] [Accepted: 09/23/1999] [Indexed: 11/20/2022] Open
Abstract
We studied phosphopeptidomannans (PPMs) of two Saccharomyces cerevisiae NCYC 625 strains (S. diastaticus): a wild type strain grown aerobically, anaerobically, and in the presence of antimycin and a [rho(0)] mutant grown aerobically and anaerobically. The aerobic wild-type cultures were highly flocculent, but all others were weakly flocculent. Ligands implicated in flocculation of mutants or antimycin-treated cells were not aggregated as much by concanavalin A as were those of the wild type. The [rho(0)] mutants and antimycin-treated cells differ from the wild type in PPM composition and invertase, acid phosphatase, and glucoamylase activities. PPMs extracted from different cells differ in the protein but not in the glycosidic moiety. The PPMs were less stable in mitochondrion-deficient cells than in wild-type cells grown aerobically, and this difference may be attributable to defective mitochondrial function during cell wall synthesis. The reduced flocculation of cells grown in the presence of antimycin, under anaerobiosis, or carrying a [rho(0)] mutation may be the consequence of alterations of PPM structures which are the ligands of lectins, both involved in this cell-cell recognition phenomenon. These respiratory chain alterations also affect peripheral, biologically active glycoproteins such as extracellular enzymes and peripheral PPMs.
Collapse
Affiliation(s)
- A R Iung
- Faculté de Pharmacie-UMR UHP-CNRS 7564-LCPE Biochimie Microbienne, Université Henri Poincaré, Nancy 1, 54001 Nancy Cedex, France
| | | | | | | | | | | |
Collapse
|
6
|
Masuoka J, Hazen KC. Differences in the acid-labile component of Candida albicans mannan from hydrophobic and hydrophilic yeast cells. Glycobiology 1999; 9:1281-6. [PMID: 10536044 DOI: 10.1093/glycob/9.11.1281] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cell surface hydrophobicity of the opportunistic fungal pathogen Candida albicans has been linked to the level of cell wall protein glycosylation. Previous work demonstrated that outer chain mannosylation, rather than overall glycosylation, correlated with cell surface hydrophobicity. These studies further suggested that the phosphodiester-linked, acid-labile beta-1,2-mannan was the correlating element. The present work tests this hypothesis and extends the previous results. The composition of bulk mannan from hydrophobic and hydrophilic yeast cells, and the acid-labile mannan from both cell types are compared. Compositional analysis shows that the protein, hexose, and phosphorus content of bulk mannan is similar between the two phenotypes. Electrophoretic separation of acid-released and fluorophore-labeled mannan shows that the acid-labile oligomannosides from hydrophobic cells are longer and potentially in greater abundance than those from hydrophilic cells. These results suggest that regulation of a single step in cell wall protein outer chain mannosylation affects the cell surface ultrastructure and phenotype of C.albicans.
Collapse
Affiliation(s)
- J Masuoka
- Department of Pathology, University of Virginia Medical Center, Charlottesville 22908, USA
| | | |
Collapse
|
7
|
Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP. Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 1998; 62:130-80. [PMID: 9529890 PMCID: PMC98909 DOI: 10.1128/mmbr.62.1.130-180.1998] [Citation(s) in RCA: 505] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was initially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis.
Collapse
Affiliation(s)
- W L Chaffin
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock 79430, USA.
| | | | | | | | | |
Collapse
|
8
|
Masuoka J, Hazen KC. Cell wall protein mannosylation determines Candida albicans cell surface hydrophobicity. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 9):3015-3021. [PMID: 9308183 DOI: 10.1099/00221287-143-9-3015] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cell surface hydrophobicity (CSH) has been shown to be an important factor in the ability of the opportunistic pathogenic yeast Candida albicans to adhere to surfaces. Hydrophobic cells adhere more readily to host tissue, and are more resistant to phagocytic killing, than hydrophilic cells. Consequently, CSH plays an important role in the pathogenicity of C. albicans. Previous work suggested a relationship between CSH and cell wall protein glycosylation. The present work tests the hypothesis that changes in outer chain mannosylation, rather than complete loss of oligosaccharide groups, are sufficient to modulate CSH. These studies compared wild-type cells to a variant that has altered mannosylation and is hydrophobic under conditions in which wild-type cells are hydrophilic. Composition analysis of cell surface digests showed that the glycosylation of wild-type cell surface proteins was much more extensive than that seen in the variant. Antibodies which recognize the acid-labile and acid-stable portions of C. albicans mannan showed not only differences between wild-type and variant cells but also differences between wild-type hydrophilic and wild-type hydrophobic cells. The results suggest that exposure of surface hydrophobic regions on C. albicans may be related to the abundance of phosphodiester-linked, acid-labile mannosyl groups rather than the complete loss of outer chain mannosylation on cell wall proteins.
Collapse
Affiliation(s)
- James Masuoka
- Department of Pathology, University of Virginia Medical Center Box 214, Charlottesville, VA 22908, USA
| | - Kevin C Hazen
- Department of Pathology, University of Virginia Medical Center Box 214, Charlottesville, VA 22908, USA
| |
Collapse
|
9
|
al-Mahmood S, Colin S, Bonaly R. Kluyveromyces bulgaricus yeast lectins. Isolation of two galactose-specific lectin forms from the yeast cell wall. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54792-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Shibata N, Fukasawa S, Kobayashi H, Tojo M, Yonezu T, Ambo A, Ohkubo Y, Suzuki S. Structural analysis of phospho-D-mannan-protein complexes isolated from yeast and mold form cells of Candida albicans NIH A-207 serotype A strain. Carbohydr Res 1989; 187:239-53. [PMID: 2663154 DOI: 10.1016/0008-6215(89)80006-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The immunochemical properties between phospho-D-mannan-protein complexes of yeast (Y) and mycelial (M) forms of Candida albicans NIH A-207 (serotype A) strain were compared. Hydrolysis of the Y-form complex gave a mixture of beta-(1----2)-linked D-mannooligosaccharides consisting mainly of tri- and tetra-ose, whereas the M-form complex gave preponderantly D-mannose. The antiserum against Y-form cells exhibited a lower reactivity with the M-form than with the Y-form complex, whereas the antiserum to M-form cells could not distinguish significantly between both complexes. Moreover, these acid-modified complexes showed lower antibody-precipitating effect than each corresponding intact complex against antisera of Y- and M-form cells. Digestion of the acid-modified Y- and M-form complexes with the Arthrobacter GJM-1 strain alpha-D-mannosidase yielded 35- and 40-% degradation products, respectively. Acetolysis of each modified complex under mild conditions gave the same D-mannohexaose, beta-D-Manp-(1----2)-beta-D-Manp-(1----2)-alpha-D-Manp -(1----2)-alpha-D-Manp- (1----2)-alpha-D-Manp-(1----2)-D-Man. Because the complexes of Y- and M-form cells of C. albicans NIH B-792 (serotype B) strain did not give any hexaose fraction containing beta-(1----2) linkages, the presence of this hexaose can be regarded as one of the dominant characteristics of the serotype-A specificity of C. albicans spp.
Collapse
Affiliation(s)
- N Shibata
- Second Department of Hygienic Chemistry, Tohoku College of Pharmacy, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Saxena A, Hammer CF, Cihlar RL. Analysis of mannans of two relatively avirulent mutant strains of Candida albicans. Infect Immun 1989; 57:413-9. [PMID: 2643567 PMCID: PMC313112 DOI: 10.1128/iai.57.2.413-419.1989] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We previously reported the isolation of two cerulenin-resistant mutant strains of Candida albicans 4918 that differ in adherence properties and are less virulent than the parental strain. In addition, biochemical characterization demonstrated significant differences in both protein and polysaccharide composition of cell wall material between the mutant and wild-type strains. These observations prompted studies concerning the chemical structure of mannans in these strains. After extraction and subsequent purification by ion-exchange chromatography, mannan fractions were subjected to either mild acid hydrolysis, alkali hydrolysis, or acetylation followed by acetolysis. Acid- and alkali-modified mannans were studied by proton magnetic resonance spectroscopy, and released products were analyzed by high-performance liquid chromatography on an Aminex HPX-42A column. The results demonstrated quantitative and qualitative differences between mannooligosaccharides of the wild-type and mutant strains in the identity of released oligosaccharides as well as in linkage of the oligosaccharides to the protein backbone.
Collapse
Affiliation(s)
- A Saxena
- Department of Microbiology, School of Medicine, Georgetown University, Washington, D.C. 20007
| | | | | |
Collapse
|
12
|
Kobayashi H, Shibata N, Yonezu T, Suzuki S. Structural study of phosphomannan-protein complex of Citeromyces matritensis containing beta-1,2 linkage. Application of partial acid degradation and acetolysis techniques under mild conditions. Arch Biochem Biophys 1987; 256:381-96. [PMID: 3606129 DOI: 10.1016/0003-9861(87)90459-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The phosphomannan-protein complex of Citeromyces matritensis IFO 0651 strain was investigated for its chemical structure by a sequential degradation procedure, partial acid degradation followed by acetolysis under mild conditions. Upon treatment with 10 mM HCl at 100 degrees C for 1 h, this complex released mannotriose and mannotetraose consisting solely of 1,2-linked beta-D-mannopyranosyl residues, ca. 20% on weight basis of the parent complex. The acid-degraded complex was then subjected to acetolysis using an acetolysis medium of low sulfuric acid concentration, a 100:100:1 (v/v) mixture of acetic anhydride, acetic acid, and sulfuric acid at 40 degrees C for 36 h. A phosphate-containing manno-oligosaccharide fraction eluted in the void-volume region of a Bio-Gel P-2 column was found to consist of Manp beta 1----2Manp beta 1----2Manp alpha 1----2Man to which 1 mol of phosphate group was attached, while a manno-oligosaccharide fraction eluted in the diffusable region was a mixture of Manp beta 1----2Manp beta 1----2Manp beta 1----2Manp alpha 1----2Man, Manp beta 1----2Manp beta 1----2Manp alpha 1----2Man, Manp beta 1----2Manp alpha 1----2Man, Manp alpha 1----2Man, and mannose in the molar ratio of 0.08:0.33:0.19:0.32:1.00. Therefore, the structural analysis of the polysaccharide moiety of a beta-1,2 linkage-containing phosphomannan-protein complex of fungal origin can be achieved by means of a sequential degradation procedure, partial acid degradation followed by acetolysis under mild conditions.
Collapse
|
13
|
Shibata N, Kobayashi H, Tojo M, Suzuki S. Characterization of phosphomannan-protein complexes isolated from viable cells of yeast and mycelial forms of Candida albicans NIH B-792 strain by the action of Zymolyase-100T. Arch Biochem Biophys 1986; 251:697-708. [PMID: 3541789 DOI: 10.1016/0003-9861(86)90379-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The isolation of phosphomannan-protein complexes from the viable cells of yeast (Y) and mycelial (M) forms of Candida albicans NIH B-792 strain was conducted by treatment with Zymolyase-100T followed by fractional precipitation with cetyltrimethylammonium bromide. The M-form complex was found to contain smaller amount of phosphate (1.3%) than that of the Y-form complex (1.6%). Proton magnetic resonance (PMR) spectra of these complexes indicated that the content of beta-1,2-linked oligomannosyl and nonreducing terminal alpha-1,3-linked mannopyranosyl residues in the M-form complex was lower than that of the Y-form complex. With hot 10 mM HCl, the Y-form complex released a mixture of oligosaccharides ranging from mannose to mannoheptaose, while the M-form complex produced lower oligosaccharides, from mannose to mannotetraose. Upon acetolysis, the acid-modified complex of the M form gave mainly mannotetraose, while that of the Y form produced mainly mannopentaose and mannohexaose in addition to mannotetraose. The average length of branching moieties of the mannan of Y-form cells was therefore longer than that of M-form cells. These results indicate that the Y to M transformation of this C. albicans strain accompanies the suppression of enzyme activity concerning the biosynthesis of mannan such as beta-1,2- and alpha-1,3-mannosyltransferases to synthesize the phosphomannan-protein complex containing mannan moiety with incomplete structure.
Collapse
|
14
|
Kobayashi H, Shibata N, Suzuki S. Acetolysis of Pichia pastoris IFO 0948 strain mannan containing alpha-1,2 and beta-1,2 linkages using acetolysis medium of low sulfuric acid concentration. Arch Biochem Biophys 1986; 245:494-503. [PMID: 3754107 DOI: 10.1016/0003-9861(86)90242-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To obtain manno-oligosaccharides containing beta-1,2-linked nonreducing terminal groups from the mannan of Pichia pastoris IFO 0948 strain by acetolysis, an attempt was made to establish the reaction conditions under which cleavage of the alpha-1,6 linkage took place preferentially leaving manno-oligosaccharides composed largely of beta-1,2 linkages. By the action of an ordinary acetolysis medium, a 10/10/1 (v/v) mixture of acetic anhydride, acetic acid, and sulfuric acid at 40 degrees C for 13 h or at 25 degrees C for 120 h, the O-acetyl derivative of this mannan gave mannose, mannobiose, mannotriose, and mannopentaose. However, treatment of the same O-acetyl mannan with a 50/50/1 (v/v) acetolysis medium at 40 degrees C for 15 h gave a mannotetraose in addition to mannose, mannobiose, mannotriose, and mannopentaose. Use of a 100/100/1 (v/v) acetolysis medium at 40 degrees C for 36 h gave a more satisfactory result, a mixture of oligosaccharides, from mannose to mannopentaose, which contained more mannotetraose than mannopentaose. Because both mannotetraose and mannopentaose contained alpha-1,2 and beta-1,2 linkages, it was concluded that an acetolysis medium containing a low concentration of sulfuric acid, up to 0.5% (v/v), facilitates the preferential cleavage of the alpha-1,6 linkage, leaving manno-oligosaccharides containing the beta-1,2 linkage which was found to be labile to the action of the 10/10/1 (v/v) acetolysis medium.
Collapse
|
15
|
Shibata N, Ichikawa T, Tojo M, Takahashi M, Ito N, Okubo Y, Suzuki S. Immunochemical study on the mannans of Candida albicans NIH A-207, NIH B-792, and J-1012 strains prepared by fractional precipitation with cetyltrimethylammonium bromide. Arch Biochem Biophys 1985; 243:338-48. [PMID: 3002275 DOI: 10.1016/0003-9861(85)90511-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The mannans of Candida albicans NIH A-207 (A strain, serotype A), C. albicans NIH B-792 (B strain, serotype B), and C. albicans J-1012 (J strain, serotype C) prepared by fractional precipitation with cetyltrimethylammonium bromide (Cetavlon) were investigated for their immunochemical properties. Upon treatment with 10 mM HCl at 100 degrees C for 60 min, the mannans of A and B strains each released a mixture of manno-oligosaccharides ranging from hexaose to mannose together with (for each one) an acid-modified mannan, while J-strain mannan released lower oligosaccharides, tetraose to mannose. The acid-modified mannan of B strain did not show antibody-precipitating activity against homologous antiserum, whereas acid-modified A- and J-strain mannans retained most of this activity. The acid-released oligosaccharides were assumed to consist of beta-1,2-linked D-mannopyranosyl residues from the results of specific rotation and proton magnetic resonance studies.
Collapse
|
16
|
|
17
|
Shibata N, Mizugami K, Suzuki S. Immunochemical properties of mannan-protein complex isolated from viable cells of Saccharomyces cerevisiae 4484-24D-1 mutant strain by the action of zymolyase. Microbiol Immunol 1984; 28:1283-92. [PMID: 6398395 DOI: 10.1111/j.1348-0421.1984.tb00786.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Viable cells of Saccharomyces cerevisiae 4484-24D-1 mutant strain were treated with an Arthrobacter sp. beta-1,3-glucanase, Zymolyase-60,000, in the presence of a serine protease inhibitor, phenylmethylsulfonyl fluoride. Fractionation of the solubilized materials with Cetavlon (cetyltrimethylammonium bromide) yielded a purified mannan-protein complex, which had a molecular weight of ca. 150,000, approximately three times higher than that of the mannan isolated from the same cells by the hot-water extraction method at 135 C. The amino acid composition of the mannan-protein complex was found to be very similar to that of the mannan-protein complexes of S. cerevisiae X2180-1A wild and S. cerevisiae X2180-1A-5 mutant strains, indicating the presence of large amounts of serine and threonine. It was unexpected that the antibody-precipitating activity of this complex against the homologous anti-whole cell serum was about twice as great as that of the mannan isolated by hot-water extraction. Treatment of this complex with 100 mM NaOH, hot water at 135 C, and pronase, respectively, gave degradation products having the same molecular weight and antibody-precipitating activity as those of the hot-water extracted mannan, allowing the assumption that the protein moiety participated in a large part of this activity.
Collapse
|
18
|
Shibata N, Mizugami K, Takano K, Suzuki S. Isolation of mannan-protein complexes from viable cells of Saccharomyces cerevisiae X2180-1A wild type and Saccharomyces cerevisiae X2180-1 A-5 mutant strains by the action of Zymolyase-60,000. J Bacteriol 1983; 156:552-8. [PMID: 6355061 PMCID: PMC217867 DOI: 10.1128/jb.156.2.552-558.1983] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The viable whole cells of Saccharomyces cerevisiae X2180-1A wild type and its mannan mutant strain S. cerevisiae X2180-1A-5, were treated with an Arthrobacter sp. beta-1,3-glucanase in the presence of a serine protease inhibitor, phenyl-methylsulfonyl fluoride. Fractionation of the solubilized materials of each strain with Cetavlon (cetyltrimethylammonium bromide) yielded one mannan-protein complex. Molecular weights of these complexes were almost the same as that of the mannoprotein of the mutant strain prepared by Nakajima and Ballou, which had a molecular weight of 133,000 and were approximately three times larger than those of the mannans isolated from the same cells by hot-water extraction. Each mannan-protein complex contained up to 2% glucose residue, which was not removed by specific precipitation with anti-mannan sera or by affinity chromatography on a column of concanavalin A-Sepharose. Treatment of these complexes with alkaline NaBH4 produced peptide-free mannan containing small amounts of glucose nearly identical to those of the parent complexes. The above findings provide evidence that the glucose residues exist in a covalently linked form to the mannan moiety. Fractionation of the mannan-protein complex of the S. cerevisiae wild-type strain by DEAE-Sephadex chromatography yielded five subfractions of different phosphate content, indicating that these highly intact mannan-protein complexes were of heterogeneous material consisting of many molecular species of different phosphate content.
Collapse
|