1
|
Lin B, Zhang JR, Lu HJ, Zhao L, Chen J, Zhang HF, Wei XS, Zhang LY, Wu XB, Lee WH. Immunoreactivity and neutralization study of Chinese Bungarus multicinctus antivenin and lab-prepared anti-bungarotoxin antisera towards purified bungarotoxins and snake venoms. PLoS Negl Trop Dis 2020; 14:e0008873. [PMID: 33253321 PMCID: PMC7728252 DOI: 10.1371/journal.pntd.0008873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/10/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
Bungarus multicinctus is the most venomous snake distributed in China and neighboring countries of Myanmar, Laos, north Vietnam and Thailand. The high mortality rate of B. multicinctus envenomation is attributed to the lethal components of α-, β-, γ- and κ- bungarotoxins contained in the venom. Although anti-B. multicinctus sera were produced in Shanghai, Taiwan and Vietnam, the most widely clinic used product was term as B. multicinctus antivenin and manufactured by Shanghai Serum Bio-technology Co. Ltd. In the present investigation, high purity α-, β- and γ-bungarotoxins were separately isolated from B. multicinctus crude venom. Rabbit anti- α-, β- and γ-bungarotoxin antisera were prepared by common methods, respectively. LD50 values of α-, β- and γ-bungarotoxins were systematically determined via three administration pathways (intraperitoneal, intramuscular and intravenous injections) in Kunming mice. LD50 values of β-bungarotoxin were closely related with injection routines but those of both α- and γ-bungarotoxins were not dependent on the injection routines. Commercial B. multicinctus antivenin showed strong immunoreaction with high molecular weight fractions of the B. multicinctus but weakly recognized low molecular weight fractions like α- and γ-bungarotoxins. Although B. multicinctus antivenin showed immunoreaction with high molecular weight fractions of Bungarus fasciatus, Naja atra, Ophiophagus hannah venoms but the antivenin only demonstrated animal protection efficacy against O. hannah venom. These results indicated that the high molecular weight fractions of the O. hannah played an important role in venom lethality but those of B. fasciatus and N. atra did not have such a role.
Collapse
Affiliation(s)
- Bo Lin
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jia-Rui Zhang
- Nanshan School, Guangzhou Medical University, Guangzhou, Guandong, China
| | - Hui-Juan Lu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lin Zhao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jing Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| | - Hong-Fei Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xue-Song Wei
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Liang-Yu Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiao-Bing Wu
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China
| | - Wen-Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
2
|
|
3
|
|
4
|
Pharmacological characterization of α-elapitoxin-Al2a from the venom of the Australian pygmy copperhead (Austrelaps labialis): An atypical long-chain α-neurotoxin with only weak affinity for α7 nicotinic receptors. Biochem Pharmacol 2012; 84:851-63. [DOI: 10.1016/j.bcp.2012.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 06/22/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022]
|
5
|
|
6
|
Greve K, La Cour T, Jensen MK, Poulsen FM, Skriver K. Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem J 2003; 371:97-108. [PMID: 12646039 PMCID: PMC1223272 DOI: 10.1042/bj20021123] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Numerous, highly conserved RING-H2 domains are found in the model plant Arabidopsis thaliana (thale cress). To characterize potential RING-H2 protein interactions, the small RING-H2 protein RHA2a was used as bait in a yeast two-hybrid screen. RHA2a interacted with one of the plant-specific NAC [NAM ('no apical meristem'), ATAF1/2, CUC2 ('cup-shaped cotyledons 2')] transcription factors, here named ANAC (abscisic acid-responsive NAC). The core RING-H2 domain was sufficient for the interaction. The ability of 11 structurally diverse RING-H2 domains to interact with ANAC was then examined. Robust interaction was detected for three of the domains, suggesting multi-specificity for the interaction. The domains that interacted with ANAC contain a glutamic acid residue in a position corresponding to a proline in many RING-H2 domains. Conversion of this glutamic acid residue into proline in RHA2a decreased its ability to interact with ANAC, most likely by changing the interaction surface. This suggested that a short, divergent region in RING-H2 domains modulate interaction specificity. ANAC contains a degenerate bipartite nuclear localization signal (NLS), while RHG1a, also identified as an ANAC interaction partner, contains a basic NLS. Both signals localized beta-glucuronidase reporter fusions to the nucleus. N-terminally truncated RHA2a also directed nuclear localization, apparently dependent on basic amino acids in the RING-H2 domain. Nuclear co-localization of the RING-H2 proteins and ANAC may enable their interaction in vivo to regulate the activity of the ANAC transcription factor.
Collapse
Affiliation(s)
- Krestine Greve
- Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | | | | | | | | |
Collapse
|
7
|
Moise L, Zeng H, Caffery P, Rogowski RS, Hawrot E. STRUCTURE AND FUNCTION OF α-BUNGAROTOXIN. ACTA ACUST UNITED AC 2002. [DOI: 10.1081/txr-120014407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Zeng H, Hawrot E. NMR-based binding screen and structural analysis of the complex formed between alpha-cobratoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica. J Biol Chem 2002; 277:37439-45. [PMID: 12133834 DOI: 10.1074/jbc.m205483200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha18-mer peptide, spanning residues 181-198 of the Torpedo nicotinic acetylcholine receptor alpha1 subunit, contains key binding determinants for agonists and competitive antagonists. To investigate whether the alpha18-mer can bind other alpha-neurotoxins besides alpha-bungarotoxin, we designed a two-dimensional (1)H-(15)N heteronuclear single quantum correlation experiment to screen four related neurotoxins for their binding ability to the peptide. Of the four toxins tested (erabutoxin a, erabutoxin b, LSIII, and alpha-cobratoxin), only alpha-cobratoxin binds the alpha18-mer to form a 1:1 complex. The NMR solution structure of the alpha-cobratoxin.alpha18-mer complex was determined with a backbone root mean square deviation of 1.46 A. In the structure, alpha-cobratoxin contacts the alpha18-mer at the tips of loop I and II and through C-terminal cationic residues. The contact zone derived from the intermolecular nuclear Overhauser effects is in agreement with recent biochemical data. Furthermore, the structural models support the involvement of cation-pi interactions in stabilizing the complex. In addition, the binding screen results suggest that C-terminal cationic residues of alpha-bungarotoxin and alpha-cobratoxin contribute significantly to binding of the alpha18-mer. Finally, we present a structural model for nicotinic acetylcholine receptor-alpha-cobratoxin interaction by superimposing the alpha-cobratoxin.alpha18-mer complex onto the crystal structure of the acetylcholine-binding protein (Protein Data Bank code ).
Collapse
Affiliation(s)
- Haoyu Zeng
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
9
|
Zeng H, Moise L, Grant MA, Hawrot E. The solution structure of the complex formed between alpha-bungarotoxin and an 18-mer cognate peptide derived from the alpha 1 subunit of the nicotinic acetylcholine receptor from Torpedo californica. J Biol Chem 2001; 276:22930-40. [PMID: 11312275 DOI: 10.1074/jbc.m102300200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The region encompassing residues 181-98 on the alpha1 subunit of the muscle-type nicotinic acetylcholine receptor forms a major determinant for the binding of alpha-neurotoxins. We have prepared an (15)N-enriched 18-amino acid peptide corresponding to the sequence in this region to facilitate structural elucidation by multidimensional NMR. Our aim was to determine the structural basis for the high affinity, stoichiometric complex formed between this cognate peptide and alpha-bungarotoxin, a long alpha-neurotoxin. Resonances in the complex were assigned through heteronuclear and homonuclear NMR experiments, and the resulting interproton distance constraints were used to generate ensemble structures of the complex. Thr(8), Pro(10), Lys(38), Val(39), Val(40), and Pro(69) in alpha-bungarotoxin and Tyr(189), Tyr(190), Thr(191), Cys(192), Asp(195), and Thr(196) in the peptide participate in major intermolecular contacts. A comparison of the free and bound alpha-bungarotoxin structures reveals significant conformational rearrangements in flexible regions of alpha-bungarotoxin, mainly loops I, II, and the C-terminal tail. Furthermore, several of the calculated structures suggest that cation-pi interactions may be involved in binding. The root mean square deviation of the polypeptide backbone in the complex is 2.07 A. This structure provides, to date, the highest resolution description of the contacts between a prototypic alpha-neurotoxin and its cognate recognition sequence.
Collapse
Affiliation(s)
- H Zeng
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown Medical School, Providence, Rhode Island 02912, USA
| | | | | | | |
Collapse
|
10
|
Rosenthal JA, Levandoski MM, Chang B, Potts JF, Shi QL, Hawrot E. The functional role of positively charged amino acid side chains in alpha-bungarotoxin revealed by site-directed mutagenesis of a His-tagged recombinant alpha-bungarotoxin. Biochemistry 1999; 38:7847-55. [PMID: 10387025 DOI: 10.1021/bi990045g] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A polyhistidine tag was added to the N-terminus of alpha-bungarotoxin (Bgtx) recombinantly expressed in E. coli. The His-tagged Bgtx was identical to native, venom-derived Bgtx in its apparent affinity for the nicotinic acetylcholine receptor (nAChR) in Torpedo electric organ membranes. Furthermore, in a physiological assay involving mouse muscle nAChR expressed in Xenopus oocytes, the His-tagged Bgtx was as effective as authentic Bgtx at blocking acetylcholine-evoked currents. Ala-substitution mutagenesis of His-tagged Bgtx was used to evaluate the functional contribution of Arg36, a residue that is invariant among all alpha-neurotoxins. Replacement with Ala resulted in a 90-fold decrease in the apparent affinity for the Torpedo nAChR and a corresponding 150-fold increase in the IC50 for block of heterologously expressed mouse muscle nAChR, demonstrating the critical importance of this positive charge for the binding and functional activity of a long alpha-neurotoxin. The observed decrease in affinity corresponds to a DeltaDeltaG of 2.7 kcal/mol and indicates that Arg36 makes a major contribution to complex formation. This finding is consistent with the proposal that Arg36 mimics the positive charge found on acetylcholine and directs the toxin to interact with receptor sites normally involved in acetylcholine recognition. In comparison, Ala-substitution of the highly conserved Lys26 resulted in only a 9-fold decrease in apparent affinity. Truncation of the His-tagged Bgtx following residue 67 produces a toxin lacking the seven C-terminal residues including the two positively charged residues Lys70 and Arg72. Truncation leads to a 7-fold decrease in apparent binding affinity.
Collapse
Affiliation(s)
- J A Rosenthal
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | | | | | | | | | |
Collapse
|
11
|
Peng SS, Kumar TK, Jayaraman G, Chang CC, Yu C. Solution structure of toxin b, a long neurotoxin from the venom of the king cobra (Ophiophagus hannah). J Biol Chem 1997; 272:7817-23. [PMID: 9065446 DOI: 10.1074/jbc.272.12.7817] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The solution structure of toxin b, a long neurotoxin (73 amino acids and 5 disulfides) from the venom of Ophiophagus hannah (king cobra), has been determined using 1H NMR and dynamical simulated annealing techniques. The structures were calculated using 485 distance constraints and 52 dihedral angle restraints. The 21 structures that were obtained satisfy the experimental restraints and possess good nonbonded contacts. Analysis of the converged structures revealed that the protein consists of a core region from which three finger-like loops extend outwards. The regular secondary structure in toxin b includes a double and a triple stranded antiparallel beta sheet. Comparison with the solution structures of other long neurotoxins reveals that although the structure of toxin b is similar to those of previously reported long neurotoxins, clear local structural differences are observed in regions proposed to be involved in binding to the acetylcholine receptor. A positively charged cluster is found in the C-terminal tail, in Loop III, and in the tip of Loop II. This cationic cluster could be crucial for the binding of the long neurotoxins to the acetylcholine receptor.
Collapse
Affiliation(s)
- S S Peng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Rosenthal J, Hsu S, Schneider D, Gentile L, Messier N, Vaslet C, Hawrot E. Functional expression and site-directed mutagenesis of a synthetic gene for alpha-bungarotoxin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78107-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
13
|
Abstract
The positive charges of amino groups in alpha-bungarotoxin (alpha-BuTX) were neutralized by reaction with trinitrobenzene sulfonate (TNBS) and were converted into negative charges with 4-chloro-3,5-dinitrobenzoate (CDNB). Three derivatives monotrinitrophenylated (TNP-) at Lys-38, 64, or 70; three di-TNP at Lys-38 and 64, Lys-38 and 70, and Lys-64 and 70; one tri-TNP at Lys-38, 64 and 70; and one penta-TNP at Lys-38, 51, 52, 64 and 70 as well as one mono-carboxydinitrophenylated (CDNP-) at Lys-38; di-CDNP at Lys-38 and 70, and tri-CDNP at Lys-38, 64 and 70 were isolated, respectively. The epsilon-amino groups at Lys-38, 64 and 70 are the most accessible to trinitrophenylation, Lys-51 and 52 are less reactive, while the N-terminus and Lys-26 are the least reactive. Each mono-TNP and CDNP derivative showed approximately 50% residual binding activity to nicotinic acetylcholine receptor (AChR)-rich membranes isolated from Torpedo californica and 50% of the lethality of alpha-BuTX. However, the activities were progressively lost as the accumulative modifications proceeded, and led finally to the formation of almost inactive penta-TNP derivative. The antigenicity of alpha-BuTX was still retained essentially intact after one or two amino groups of lysine residues were modified, whereas tri-TNP and CDNP-derivatives modified at Lys-38, 64 and 70 lost 46 and 70% of their antigenicity, respectively. Pronounced alteration in antigenicity was observed after five amino groups were trinitrophenylated. The present study indicates that the amino groups in alpha-BuTX may participate in the multipoint contact between the toxin and AChR, but none of the individual amino groups is definitely essential for the binding.
Collapse
Affiliation(s)
- S R Lin
- Department of Chemistry, Kaohsiung Medical College, Taiwan, R.O.C
| | | |
Collapse
|
14
|
Mori N, Tu AT, Maurer A. Characterization of nicked myotoxin a and its effect on the sarcoplasmic reticulum calcium pump. Arch Biochem Biophys 1988; 266:171-80. [PMID: 2972257 DOI: 10.1016/0003-9861(88)90247-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Myotoxin a, a muscle-necrotizing polypeptide isolated from Crotalus viridis viridis (prairie rattlesnake) venom, was nicked at Met-28 by cyanogen bromide. Amino acid analysis indicated that the methionine content was reduced to zero from the original 1 mol. Judging from circular dichroism, the nicked myotoxin a had a conformation similar to that of original myotoxin. Raman spectra indicated that the conformations of the three disulfide bonds are not affected in nicked myotoxin a. Like the original toxin, nicked myotoxin a was myotoxic and inhibited calcium ion loading activity, although the inhibitory action was slightly lower than that of the original myotoxin a. Both modified and unmodified myotoxin a showed myonecrotic activity as determined by examining histological slides. The modified toxin also inhibited the formation of decavanadate-induced two-dimensional crystalline arrays of the sarcoplasmic reticulum Ca2+-ATPase just as the original myotoxin a does.
Collapse
Affiliation(s)
- N Mori
- Department of Biochemistry, Colorado State University, Fort Collins 80523
| | | | | |
Collapse
|
15
|
Chen ST, Chiou SH, Chu YH, Wang KT. Rapid hydrolysis of proteins and peptides by means of microwave technology and its application to amino acid analysis. INTERNATIONAL JOURNAL OF PEPTIDE AND PROTEIN RESEARCH 1987; 30:572-6. [PMID: 3429135 DOI: 10.1111/j.1399-3011.1987.tb03367.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A rapid heating method of hydrolysis by the use of microwave oven has been applied to amino acid analysis of proteins and peptides. This convenient method has been compared with the conventional 6 N HCl hydrolysis at 110 degrees for 24 h. The advantages of this new method are its expedition and the accurate and comparable results as compared to the tedious conventional technique. The method provides a rapid processing of multiple samples within minutes instead of days and inexpensive access to the important data of amino acid compositions of proteins by the commonly used microwave oven. The necessary change in the design of hydrolysis vials and the safety precautions accompanying this novel use of microwave acid-digestion method are also described.
Collapse
Affiliation(s)
- S T Chen
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Republic of China
| | | | | | | |
Collapse
|
16
|
|