1
|
Berberián G, Hidalgo C, DiPolo R, Beaugé L. ATP stimulation of Na+/Ca2+ exchange in cardiac sarcolemmal vesicles. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C724-33. [PMID: 9530104 DOI: 10.1152/ajpcell.1998.274.3.c724] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In cardiac sarcolemmal vesicles, MgATP stimulates Na+/Ca2+ exchange with the following characteristics: 1) increases 10-fold the apparent affinity for cytosolic Ca2+; 2) a Michaelis constant for ATP of approximately 500 microM; 3) requires micromolar vanadate while millimolar concentrations are inhibitory; 4) not observed in the presence of 20 microM eosin alone but reinstated when vanadate is added; 5) mimicked by adenosine 5'-O-(3-thiotriphosphate), without the need for vanadate, but not by beta,gamma-methyleneadenosine 5'-triphosphate; and 6) not affected by unspecific protein alkaline phosphatase but abolished by a phosphatidylinositol-specific phospholipase C (PI-PLC). The PI-PLC effect is counteracted by phosphatidylinositol. In addition, in the absence of ATP, L-alpha-phosphatidylinositol 4,5-bisphosphate (PIP2) was able to stimulate the exchanger activity in vesicles pretreated with PI-PLC. This MgATP stimulation is not related to phosphorylation of the carrier, whereas phosphorylation appeared in the phosphoinositides, mainly PIP2, that coimmunoprecipitate with the exchanger. Vesicles incubated with MgATP and no Ca2+ show a marked synthesis of L-alpha-phosphatidylinositol 4-monophosphate (PIP) with little production of PIP2; in the presence of 1 microM Ca2+, the net synthesis of PIP is smaller, whereas that of PIP2 increases ninefold. These results indicate that PIP2 is involved in the MgATP stimulation of the cardiac Na+/Ca2+ exchanger through a fast phosphorylation chain: a Ca(2+)-independent PIP formation followed by a Ca(2+)-dependent synthesis of PIP2.
Collapse
Affiliation(s)
- G Berberián
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Córdoba, Argentina
| | | | | | | |
Collapse
|
2
|
Pluskey S, Mahroof-Tahir M, Crans DC, Lawrence DS. Vanadium oxoanions and cAMP-dependent protein kinase: an anti-substrate inhibitor. Biochem J 1997; 321 ( Pt 2):333-9. [PMID: 9020863 PMCID: PMC1218073 DOI: 10.1042/bj3210333] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium oxoions have been shown to elicit a wide range of effects in biological systems, including an increase in the quantity of phosphorylated proteins. This response has been attributed to the inhibition of protein phosphatases, the indirect activation of protein kinases via stimulation of enzymes at early steps in signal transduction pathways and/or the direct activation of protein kinases. We have evaluated the latter possibility by exploring the effects of vanadate, decavanadate and vanadyl cation species on the activity of the cAMP-dependent protein kinase (PKA), a serine/threonine kinase. Vanadate, in the form of monomer, dimer, tetramer and pentamer species, neither inhibits nor activates PKA. In marked contrast, decavandate is a competitive inhibitor (Ki = 1.8 +/- 0.1 mM) of kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly), a peptide-based substrate. This inhibition pattern is especially surprising, since the negatively charged decavanadate would not be predicted to bind to the region of the active site of the enzyme that accommodates the positively charged kemptide substrate. Our studies suggest that decavanadate can associate with kemptide in solution, which would prevent kemptide from interacting with the enzyme. Vanadium(IV) also inhibits the PKA-catalysed phosphorylation of kemptide, but with an IC50 of 366 +/- 10 microM. However, in this case V4+ appears to bind to the Mg(2+)-binding site, since it can substitute for Mg2+. In the absence of Mg2+, the optimal concentration of vanadium(IV) for the PKA-catalysed phosphorylation of kemptide is 100 microM, with concentrations above 100 microM being markedly inhibitory. However, even at the optimal 100 microM V4+ concentration, the Vmax and K(m) values (for kemptide) are significantly less favourable than those obtained in the presence of 100 microM Mg2+. In summary, we have found that oxovanadium ions can directly alter the activity of the serine/threonine-specific PKA.
Collapse
Affiliation(s)
- S Pluskey
- Department of Biochemistry, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
3
|
Abstract
Redox (oxidation-reduction) reactions regulate signal transduction. Oxidants such as superoxide, hydrogen peroxide, hydroxyl radicals, and lipid hydroperoxides (i.e., reactive oxygen species) are now realized as signaling molecules under subtoxic conditions. Nitric oxide is also an example of a redox mediator. Reactive oxygen species induce various biological processes such as gene expression by stimulating signal transduction components such as Ca(2+)-signaling and protein phosphorylation. Various oxidants increase cytosolic Ca2+; however, the exact origin of Ca2+ is controversial. Ca2+ may be released from the endoplasmic reticulum, extracellular space, or mitochondria in response to oxidant-influence on Ca2+ pumps, channels, and transporters. Alternatively, oxidants may release Ca2+ from Ca2+ binding proteins. Various oxidants stimulate tyrosine as well as serine/threonine phosphorylation, and direct stimulation of protein kinases and inhibition of protein phosphatases by oxidants have been proposed as mechanisms. The oxidant-stimulation of the effector molecules such as phospholipase A2 as well as the activation of oxidative stress-responsive transcription factors may also depend on the oxidant-mediated activation of Ca(2+)-signaling and/or protein phosphorylation. In addition to the stimulation of signal transduction by oxidants, the observations that ligand-receptor interactions produce reactive oxygen species and that antioxidants block receptor-mediated signal transduction led to a proposal that reactive oxygen species may be second messengers for transcription factor activation, apoptosis, bone resorption, cell growth, and chemotaxis. Physiological significance of the role of biological oxidants in the regulation of signal transduction as well as the mechanisms of the oxidant-stimulation of signal transduction are discussed.
Collapse
Affiliation(s)
- Y J Suzuki
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007-2197, USA
| | | | | |
Collapse
|
4
|
Kowalski LA, Tsang SS, Davison AJ. Arsenic and chromium enhance transformation of bovine papillomavirus DNA-transfected C3H/10T1/2 cells. Cancer Lett 1996; 103:65-9. [PMID: 8616810 DOI: 10.1016/0304-3835(96)04189-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Tumor promoters such as phorbol esters, teleocidin and okadaic acid increase the numbers of multilayered, transformed foci produced by BPV DNA-transfected C3H/10T1/2 cells. We questioned whether arsenic and chromium, which are known human carcinogens also enhance transformation of BPV DNA-transfected C3H/10T1/2 cells. Cr(III) potassium sulfate at 100 microM enhanced transformation by 1.4-fold, but Cr(VI) as potassium chromate did not enhance transformation, although toxicity of potassium chromate may have prevented enhancement of transformation. Sodium arsenite (As(III) at 5 microM and sodium arsenate (As(V)) at 25 microM both enhanced neoplastic transformation by 6-fold. By comparison, in previous studies, sodium orthovanadate (V(IV)) or vanadyl sulfate (V(IV)) at 4 microM enhanced numbers of transformed foci by 25-50-fold. The comparatively strong enhancement of transformation by vanadium and phorbol esters suggests that neoplastic transformation may occur by mechanisms that are common to these compounds including alteration of tyrosine phosphorylation.
Collapse
|
5
|
De Neef RS, Hardy-Dessources MD, Giraud F. Relationship between type II phosphatidylinositol 4-kinase activity and protein tyrosine phosphorylation in membranes from normal and sickle red cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 235:549-56. [PMID: 8654400 DOI: 10.1111/j.1432-1033.1996.00549.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To assess the origin of the previously reported higher type II phosphatidylinositol 4-kinase (PtdIns 4-kinase) activity of sickle-red-cell membranes [Rhoda-Hardy-Dessources, M.D., de Neef, R.S., Mérault, G.& Giraud, F. (1993) Biochim. Biophs. Acta 1181, 90-96], we have investigated the possible involvement of protein kinase C and tyrosine kinases in the regulation of the lipid kinase activity. Both protein kinase activities were found to be markedly higher in membranes from the pathological cells. When isolated normal-red-cell or sickle-red-cell membranes were assayed, phosphatidylinositol phosphorylation activity was not significantly modified after phorbol ester modulation of protein kinase C. In contrast, stimulation (with sodium orthovanadate) or inhibiton (by tyrphostin) of tyrosine phosphorylation led respectively, to increased or decreased PtdIns 4-kinase activity in membranes from both cell types. Moreover, immunoprecipitations of membrane extracts from normal and sickle red cells types with anti-PtdIns 4-kinase antibody 4C5G, followed by immunoblotting with an anti-phosphotyrosine Ig, revealed a 56-kDa band migrating with PtdIns 4-kinase activity. Taken together, these findings indicate that PtdIns 4-Kinase in red blood cells is a phosphotyrosine-containing protein and could be regulated by a mechanism involving tyrosine phosphorylation, and the increase in PtdIns 4-Kinase activity of sickle-red-cell membranes is at least in part mediated by their intrinsic tyrosine kinase activity.
Collapse
Affiliation(s)
- R S De Neef
- Unité de Recherche sur la Drépanocytose, INSERM U359, Pointe-à-Pitre, Guadeloupe
| | | | | |
Collapse
|
6
|
Oka JA, Weigel PH. Vanadate modulates the activity of a subpopulation of asialoglycoprotein receptors on isolated rat hepatocytes: active surface receptors are internalized and replaced by inactive receptors. Arch Biochem Biophys 1991; 289:362-70. [PMID: 1898076 DOI: 10.1016/0003-9861(91)90424-h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the absence of ligand, sodium vanadate causes a time- and dose-dependent loss of up to approximately 50% of the surface galactosyl receptor (GalR) activity in rat hepatocytes at 37 degrees C. The effect on total (surface plus intracellular) GalR activity is also dependent on exposure time and vanadate concentration. At less than 1 mM, vanadate induces a transient decrease and then partial recovery of cell surface GalR activity. At greater than 3 mM vanadate, surface GalR activity decreases rapidly (t1/2 approximately 2 min). Lost surface activity is initially recovered in digitonin-permeabilized cells, indicating that active surface GalRs redistribute to the cell interior. However, an antibody assay for GalR protein showed that although surface activity decreased, there was no decrease in surface receptor protein. The active intracellular GalRs then slowly inactivate over 30-60 min. With 8 mM vanadate, the loss of both surface and total cellular GalR activity is more rapid and coincident; no lag is observed. Maximal activity loss, however, was still only approximately 50%. Again, no net change was seen in the distribution of GalR protein between the cell surface and the interior. These results indicate that vanadate causes active GalRs to move from the surface to the inside and be replaced by inactive receptors moving from the inside to the cell surface. The Gal receptor system is comprised of two functionally different receptor subpopulations that operate via two distinct intracellular pathways. Only the State 2 GalRs, which recycle constitutively, are sensitive to modulation by vanadate. Consistent with this, vanadate inhibits the endocytosis of 125I-asialoorosomucoid (ASOR) only partially. The rate of uptake and the steady state level of ASOR intracellular accumulation were maximally inhibited by 50 and 70%, respectively, at 0.2 mM vanadate. The rate and extent of degradation of 125I-ASOR were also inhibited by 50-70%. Residual ASOR uptake and degradation is accounted for by the minor vanadate-resistant State 1 Gal receptor pathway.
Collapse
Affiliation(s)
- J A Oka
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
7
|
Vaddi K, Wei CI. Modulation of Fc tau receptor expression and function in mouse peritoneal macrophages by ammonium metavanadate. INTERNATIONAL JOURNAL OF IMMUNOPHARMACOLOGY 1991; 13:1167-76. [PMID: 1667652 DOI: 10.1016/0192-0561(91)90168-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Resident peritoneal macrophages (PEM) harvested from female B6C3F1 mice given an intraperitoneal injection of ammonium metavanadate (2.5 or 10 mg V/kg), an equivalent amount of ammonium in the form of ammonium chloride, or sodium phosphate buffer (0.1 M, pH 7.2) every third day for 6 weeks, were subjected to flow cytometric analysis of Fc tau 2a and Fc tau 2b receptor expression, and photometric microassay to measure receptor mediated binding and phagocytosis of sheep red blood cells (SRBC). The NH4Cl and 10V groups showed 21.7 and 17.2% lower mean fluorescence channel (MFC) values and 7.1 and 5.9% lower values in percentage fluorescence-positive cells than the phosphate buffer control with respect to Fc tau 2a expression. For Fc tau 2b expression, the 10V group showed significantly (P less than 0.05) lower MFC (31.2%) and percentage fluorescence-positive cells (15.7%) than the phosphate buffer control. Though the four groups did not show a significant difference in Fc tau 2a mediated binding and phagocytosis of SRBC, the 10V group showed a significantly lower Fc tau 2b mediated binding and phagocytosis. The results indicate that the reduction in Fc tau 2b expression and function could contribute toward the previously observed depression in phagocytosis, NADPH-oxidase and superoxide generation in peritoneal macrophages obtained from vanadate-treated animals.
Collapse
Affiliation(s)
- K Vaddi
- Food Science and Human Nutrition Department, University of Florida, Gainesville 32611-0163
| | | |
Collapse
|
8
|
Chen YX, Yang DC, Brown AB, Jeng Y, Tatoyan A, Chan TM. Activation of a membrane-associated phosphatidylinositol kinase through tyrosine-protein phosphorylation by naphthoquinones and orthovanadate. Arch Biochem Biophys 1990; 283:184-92. [PMID: 1700668 DOI: 10.1016/0003-9861(90)90629-d] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have previously reported that several naphthoquinones stimulated tyrosine-specific protein phosphorylation in isolated rat liver membranes. Our more recent study demonstrated a similar effect by orthovanadate, which concomitantly stimulated phosphorylation of protein-tyrosine and phosphatidylinositol (Ptd-Ins). Results presented here show a simultaneous increase in PtdIns phosphorylation along with stimulation of tyrosine-protein phosphorylation by naphthoquinones. This PtdIns kinase resembles the type I PtdIns kinase in that it was insensitive to adenosine inhibition. The product, nevertheless, comigrated with a PtdIns-4-phosphate standard in TLC using three different solvent systems. Stimulation of PtdIns phosphorylation by vanadate or naphthoquinones could be achieved in the following preparations: intact rat liver membranes, Triton X-100-solubilized membranes, solubilized membranes partially purified by Sephacryl chromatography, solubilized membranes purified by wheat germ agglutinin chromatography. The naphthoquinone or vanadate-activated PtdIns kinase activity could be isolated by antiphosphotyrosine antibody-agarose affinity chromatography. The relative potencies of a series of ring-substituted naphthoquinones in the stimulation of tyrosine-protein phosphorylation, PtdIns kinase activity, dithiothreitol-dependent oxygen consumption, and cytochrome c reduction were highly correlated. We conclude that oxidant(s) produced by redox cycling of naphthoquinones stimulated an adenosine-insensitive PtdIns kinase through tyrosine phosphorylation of the enzyme.
Collapse
Affiliation(s)
- Y X Chen
- Institute for Toxicology (Pharmacy), University of Southern California, Los Angeles 90033
| | | | | | | | | | | |
Collapse
|
9
|
Gullapalli S, Kurup CK, Ramasarma T. Decavanadate acts like an alpha-adrenergic agonist in redistributing protein kinase C activity. FEBS Lett 1990; 267:93-5. [PMID: 1973125 DOI: 10.1016/0014-5793(90)80296-u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Perfusion of rat livers with polyvanadate, but not metavanadate, was found to increase in plasma membrane and decrease in cytosol protein kinase C activity, similar to that obtained with phenylephrine, an alpha-adrenergic agonist. The effect was prevented by phenoxybenzamine, but not by propranolol implicating alpha-adrenergic receptor activation. Comparison of crystal structures of decavanadate and nonadrenaline revealed the occurrence of a structural feature of O-O-O(N) with distances of 5.5 A and 2.9 A.
Collapse
Affiliation(s)
- S Gullapalli
- Department of Biochemistry, Indian Institute of Science, Bangalore
| | | | | |
Collapse
|