Li LA, Tabita FR. Transcription control of ribulose bisphosphate carboxylase/oxygenase activase and adjacent genes in Anabaena species.
J Bacteriol 1994;
176:6697-706. [PMID:
7961423 PMCID:
PMC197027 DOI:
10.1128/jb.176.21.6697-6706.1994]
[Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The gene encoding ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activase (rca) was uniformly localized downstream from the genes encoding the large and small subunits of RubisCO (rbcL and rbcS) in three strains of Anabaena species. However, two open reading frames (ORF1 and ORF2), situated between rbcS and rca in Anabaena sp. strain CA, were not found in the intergenic region of Anabaena variabilis and Anabaena sp. strain PCC 7120. During autotrophic growth of Anabaena cells, rca and rbc transcripts accumulated in the light and diminished in the dark; light-dependent expression of these genes was not affected by the nitrogen source and the concentration of exogenous CO2 supplied to the cells. When grown on fructose, rca- and rbc-specific transcripts accumulated in A. variabilis regardless of whether the cells were illuminated. Transcript levels, however, were much lower in dark-grown heterotrophic cultures than in photoheterotrophic cultures. In photoheterotrophic cultures, the expression of the rca and rbc genes was similar to that in cultures grown with CO2 as the sole source of carbon. Although the rbcL-rbcS and rca genes are linked and are in the same transcriptional orientation in Anabaena strains, hybridization of rbc and rca to distinct transcripts suggested that these genes are not cotranscribed, consistent with the results of primer extension and secondary structure analysis of the nucleotide sequence. Transcription from ORF1 and ORF2 was not detected under the conditions examined, and the function of these putative genes remains unknown.
Collapse