1
|
Belibasakis GN, Belstrøm D, Eick S, Gursoy UK, Johansson A, Könönen E. Periodontal microbiology and microbial etiology of periodontal diseases: Historical concepts and contemporary perspectives. Periodontol 2000 2023. [PMID: 36661184 DOI: 10.1111/prd.12473] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/21/2023]
Abstract
This narrative review summarizes the collective knowledge on periodontal microbiology, through a historical timeline that highlights the European contribution in the global field. The etiological concepts on periodontal disease culminate to the ecological plaque hypothesis and its dysbiosis-centered interpretation. Reference is made to anerobic microbiology and to the discovery of select periodontal pathogens and their virulence factors, as well as to biofilms. The evolution of contemporary molecular methods and high-throughput platforms is highlighted in appreciating the breadth and depth of the periodontal microbiome. Finally clinical microbiology is brought into perspective with the contribution of different microbial species in periodontal diagnosis, the combination of microbial and host biomarkers for this purpose, and the use of antimicrobials in the treatment of the disease.
Collapse
Affiliation(s)
- Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Belstrøm
- Section for Clinical Oral Microbiology, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Ulvi K Gursoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | | | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
2
|
Prevalence of the JP2 genotype of Aggregatibacter actinomycetemcomitans in the world population: a systematic review. Clin Oral Investig 2022; 26:2317-2334. [DOI: 10.1007/s00784-021-04343-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
|
3
|
Claesson R, Chiang HM, Lindholm M, Höglund Åberg C, Haubek D, Johansson A, Oscarsson J. Characterization of Aggregatibacter actinomycetemcomitans Serotype b Strains with Five Different, Including Two Novel, Leukotoxin Promoter Structures. Vaccines (Basel) 2020; 8:vaccines8030398. [PMID: 32698444 PMCID: PMC7563764 DOI: 10.3390/vaccines8030398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/23/2023] Open
Abstract
The JP2 genotype of A. actinomycetemcomitans, serotype b has attracted much interest during the past three decades due to its close association with periodontitis in young individuals and the enhanced expression of a leukotoxin (LtxA). A typical feature of this genotype is a 530-base pair (bp) deletion in the ltxCABD promoter region controlling leukotoxin expression. In the present work, we have characterized serotype b strains with four additional promoter types. Two novel types have been recognized, that is, one with a 230-bp deletion and one with a 172-bp duplication. Moreover, a strain with a 640-bp deletion and three strains with a full-length promoter, including the type strain Y4, were included in the present study. The seven strains were characterized by multi locus sequence typing (MLST) and arbitrarily primed polymerase chain reaction (PCR) and assessed for LtxA production. MLST showed that the strains with the non-JP2-like deletions represented distinct monophyletic groups, whereas the JP2 strain, HK1651, represented a separate branch. LtxA production was high in all three strains with a promoter deletion, whereas the other four strains showed significantly lower levels. It can be concluded that the genetic characterization and determination of LtxA production of A. actinomycetemcomitans isolates from individuals with periodontitis can contribute to the identification of novel virulent genotypes of this bacterium.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
- Correspondence:
| | - Huei-Min Chiang
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Mark Lindholm
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
| | - Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Dorte Haubek
- Section for Paediatric Dentistry, Department of Dentistry and Oral Health, Aarhus University, 8000 Aarhus, Denmark;
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
4
|
Nygren P, Balashova N, Brown AC, Kieba I, Dhingra A, Boesze-Battaglia K, Lally ET. Aggregatibacter actinomycetemcomitans leukotoxin causes activation of lymphocyte function-associated antigen 1. Cell Microbiol 2018; 21:e12967. [PMID: 30329215 DOI: 10.1111/cmi.12967] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/20/2018] [Accepted: 10/05/2018] [Indexed: 11/29/2022]
Abstract
Repeats-in-toxin leukotoxin (LtxA) produced by the oral bacterium Aggregatibacter actinomycetemcomitans kills human leukocytes in a lymphocyte function-associated antigen 1 (LFA-1, integrin αL /β2 )-dependent manner, although the mechanism for this interaction has not been identified. The LtxA internalisation by LFA-1-expressing cells was explored with florescence resonance energy transfer (FRET) microscopy using a cell line that expresses LFA-1 with a cyan fluorescent protein-tagged cytosolic αL domain and a yellow fluorescent protein-tagged β2 domain. Phorbol 12-myristate 13-acetate activation of LFA-1 caused transient cytosolic domain separation. However, addition of LtxA resulted in an increase in FRET, indicating that LtxA brings the cytosolic domains closer together, compared with the inactive state. Unlike activation, this effect was not transient, lasting more than 30 min. Equilibrium constants of LtxA binding to the cytoplasmic domains of both αL and β2 were determined using surface plasmon resonance. LtxA has a strong affinity for the cytosolic domains of both the αL and β2 subunits (Kd = 15 and 4.2 nM, respectively) and a significantly lower affinity for the cytoplasmic domains of other integrin αM , αX , and β3 subunits (Kd = 400, 180, and 230 nM, respectively), used as controls. Peptide fragments of αL and β2 show that LtxA binds membrane-proximal domain of αL and intermediate domain of β2 .
Collapse
Affiliation(s)
- Patrik Nygren
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nataliya Balashova
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Angela C Brown
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irene Kieba
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anuradha Dhingra
- Departments of Biochemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Edward T Lally
- Departments of Pathology, School of Dental Medicine, and the Division of Hematology/Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Brown AC, Boesze-Battaglia K, Balashova NV, Mas Gómez N, Speicher K, Tang HY, Duszyk ME, Lally ET. Membrane localization of the Repeats-in-Toxin (RTX) Leukotoxin (LtxA) produced by Aggregatibacter actinomycetemcomitans. PLoS One 2018; 13:e0205871. [PMID: 30335797 PMCID: PMC6193665 DOI: 10.1371/journal.pone.0205871] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The oral bacterium, Aggregatibacter actinomycetemcomitans, which is associated with localized aggressive periodontitis, as well as systemic infections including endocarditis, produces numerous virulence factors, including a repeats-in-toxin (RTX) protein called leukotoxin (LtxA), which kills human immune cells. The strains of A. actinomycetemcomitans most closely associated with disease have been shown to produce the most LtxA, suggesting that LtxA plays a significant role in the virulence of this organism. LtxA, like many of the RTX toxins, can be divided into four functional domains: an N-terminal hydrophobic domain, which contains a significant fraction of hydrophobic residues and has been proposed to play a role in the membrane interaction of the toxin; the central domain, which contains two lysine residues that are the sites of post-translational acylation; the repeat domain that is characteristic of the RTX toxins, and a C-terminal domain thought to be involved in secretion. In its initial interaction with the host cell, LtxA must bind to both cholesterol and an integrin receptor, lymphocyte function-associated antigen-1 (LFA-1). While both interactions are essential for toxicity, the domains of LtxA involved remain unknown. We therefore undertook a series of experiments, including tryptophan quenching and trypsin digestion, to characterize the structure of LtxA upon interaction with membranes of various lipid compositions. Our results demonstrate that LtxA adopts a U-shaped conformation in the membrane, with the N- and C-terminal domains residing outside of the membrane.
Collapse
Affiliation(s)
- Angela C. Brown
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nataliya V. Balashova
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Nestor Mas Gómez
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Kaye Speicher
- Wistar Institute, Philadelphia, PA, United States of America
| | - Hsin-Yao Tang
- Wistar Institute, Philadelphia, PA, United States of America
| | - Margaret E. Duszyk
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
| | - Edward T. Lally
- Department of Pathology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Tsai CC, Ho YP, Chou YS, Ho KY, Wu YM, Lin YC. Aggregatibacter (Actinobacillus) actimycetemcomitans leukotoxin and human periodontitis - A historic review with emphasis on JP2. Kaohsiung J Med Sci 2018; 34:186-193. [PMID: 29655406 DOI: 10.1016/j.kjms.2018.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/06/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022] Open
Abstract
Aggregatibacter (Actinobacillus) actimycetemcomitans (Aa) is a gram-negative bacterium that colonizes the human oral cavity and is causative agent for localized aggressive (juvenile) periodontitis (AgP). In the middle of 1990s, a specific JP2 clone of belonging to the cluster of serotype b strains of Aa with highly leukotoxicity (leukotoxin, LtxA) able to kill human immune cells was isolated. JP2 clone of Aa was strongly associated with in particularly in rapidly progressing forms of aggressive periodontitis. The JP2 clone of Aa is transmitted through close contacts. Therefore, AgP patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontitis lesions are relatively high. Furthermore, timely periodontal treatment, including periodontal surgery supplemented by the use of antibiotics, is warranted. More importantly, periodontal attachment loss should be prevented by early detection of the JP2 clone of Aa by microbial diagnosis testing and/or preventive means.
Collapse
Affiliation(s)
- Chi-Cheng Tsai
- School of Dentistry, College of Oral Medicine, University Hospital, Chung Shan Medical University, Taichung City, Taiwan.
| | - Ya-Ping Ho
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Yu-Shian Chou
- Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Kun-Yen Ho
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Yi-Min Wu
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan; Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
| | - Ying-Chu Lin
- College of Dental Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
| |
Collapse
|
7
|
Jensen AB, Ennibi OK, Ismaili Z, Poulsen K, Haubek D. The JP2 genotype of Aggregatibacter actinomycetemcomitans
and marginal periodontitis in the mixed dentition. J Clin Periodontol 2016; 43:19-25. [PMID: 26659719 DOI: 10.1111/jcpe.12486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2015] [Indexed: 10/25/2022]
Affiliation(s)
- Anne Birkeholm Jensen
- Section for Pediatric Dentistry; Department of Dentistry, Health; Aarhus University; Aarhus Denmark
| | - Oum Keltoum Ennibi
- Department of Periodontology; Faculty of Medicine Dentistry; Mohammed V Souissi University; Rabat Morocco
| | - Zouheir Ismaili
- Department of Periodontology; Faculty of Medicine Dentistry; Mohammed V Souissi University; Rabat Morocco
| | - Knud Poulsen
- Department of Biomedicine, Health; Aarhus University; Aarhus Denmark
| | - Dorte Haubek
- Section for Pediatric Dentistry; Department of Dentistry, Health; Aarhus University; Aarhus Denmark
| |
Collapse
|
8
|
Characterization of A. actinomycetemcomitans strains in subgingival samples from periodontitis subjects in Morocco. Clin Oral Investig 2015; 20:1809-18. [DOI: 10.1007/s00784-015-1653-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 11/09/2015] [Indexed: 10/22/2022]
|
9
|
Haubek D, Johansson A. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis. J Oral Microbiol 2014; 6:23980. [PMID: 25206940 PMCID: PMC4139931 DOI: 10.3402/jom.v6.23980] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/01/2023] Open
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2 clone, are likely to share this clone with several family members because the clone is transmitted through close contacts. This is a challenge to the clinicians. The patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontal lesions are relatively high. Furthermore, timely periodontal treatment, in some cases including periodontal surgery supplemented by the use of antibiotics, is warranted. Preferably, periodontal attachment loss should be prevented by early detection of the JP2 clone of A. actinomycetemcomitans by microbial diagnostic testing and/or by preventive means.
Collapse
Affiliation(s)
- Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Anders Johansson
- Department of Molecular Periodontology, Umea University, Umea, Sweden
| |
Collapse
|
10
|
Mínguez M, Pousa X, Herrera D, Blasi A, Sánchez MC, León R, Sanz M. Characterization and serotype distribution of Aggregatibacter actinomycetemcomitans isolated from a population of periodontitis patients in Spain. Arch Oral Biol 2014; 59:1359-67. [PMID: 25201701 DOI: 10.1016/j.archoralbio.2014.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/08/2014] [Accepted: 07/27/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is no study characterizing the variability of Aggregatibacter actinomycetemcomitans isolates in periodontitis patients in Spain. It is therefore the aim of this investigation to study the serotype distribution of A. actinomycetemcomitans strains isolated from periodontitis patients in Spain. The polymorphism of the genes that codifies the leukotoxin and the operon of the cytolethal-distending toxin (cdt) will also be investigated. DESIGN From a total of 701 patients samples, 40 A. actinomycetemcomitans-positive periodontitis patients were included in the study (mean age 45.3, 62.5% females) and their clinical periodontal status was assessed. On average, 1-3 isolates from each patient were sub-cultured and characterized by PCR. RESULTS Using culture the prevalence of A. actinomycetemcomitans was 5.7%. The most frequent serotype was "b", being 30 patients infected by a unique serotype, while 7 patients showed co-colonization, mostly with serotypes "a" and "b". From the 79 pure isolates obtained, 24 were from serotype "a", 30 from serotype "b", 12 from serotype "c" and 4 from serotype "d". Further characterization of these samples showed that none of these 79 isolates demonstrated the 530-bp deletion in the leukotoxin's promoter region that characterizes the JP2 strain. Conversely 65.8% of the isolates were cdt+. CONCLUSIONS The most common serotypes were "a" and "b", being serotype "b" the most prevalent in mono-colonization, while serotypes "e" and "f" were not detected. In the majority of samples, operon that codifies the cdt (65.8%) and the genes responsible for the codification of leukotoxin (100%) were found. None of the isolates were JP2 strains.
Collapse
Affiliation(s)
- María Mínguez
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Xiana Pousa
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain
| | - David Herrera
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain; ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain.
| | - Andrea Blasi
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mari Carmen Sánchez
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Rubén León
- Laboratory of Research, Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Section of Periodontology, Faculty of Odontology, University Complutense, Madrid, Spain; ETEP (Etiology and Therapy of Periodontal Diseases) Research Group, University Complutense, Madrid, Spain
| |
Collapse
|
11
|
A consortium of Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, and Filifactor alocis is present in sites prior to bone loss in a longitudinal study of localized aggressive periodontitis. J Clin Microbiol 2013; 51:2850-61. [PMID: 23784124 DOI: 10.1128/jcm.00729-13] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans-induced localized aggressive periodontitis (LAP) in African-American adolescents has been documented but is poorly understood. Two thousand fifty-eight adolescents aged 11 to 17 years were screened for their periodontal status and the presence of A. actinomycetemcomitans in their oral cavity. Seventy-one A. actinomycetemcomitans-negative and 63 A. actinomycetemcomitans-positive periodontally healthy subjects were enrolled, sampled, examined, and radiographed yearly for 3 years. Gingival and periodontal pocket depth and attachment levels were recorded. Disease presentation was characterized by bone loss (BL). Subgingival sites were sampled every 6 months to assess (i) the role of A. actinomycetemcomitans in BL and (ii) the association of A. actinomycetemcomitans and other microbes in their relationships to BL. Sixteen of 63 subjects with A. actinomycetemcomitans developed BL (the other 47 subjects with A. actinomycetemcomitans had no BL). No A. actinomycetemcomitans-negative subjects developed BL. Human oral microbe identification microarray (HOMIM) was used for subgingival microbial assessment. On a subject level, pooled data from A. actinomycetemcomitans-positive subjects who remained healthy had higher prevalences of Streptococcus and Actinomyces species, while A. actinomycetemcomitans-positive subjects with BL had higher prevalences of Parvimonas micra, Filifactor alocis, A. actinomycetemcomitans, and Peptostreptococcus sp. human oral taxon 113 (HOT-113). At vulnerable sites, A. actinomycetemcomitans, Streptococcus parasanguinis, and F. alocis levels were elevated prior to BL. In cases where the three-organism consortium (versus A. actinomycetemcomitans alone) was detected, the specificity for detecting sites of future BL increased from 62% to 99%, with a sensitivity of 89%. We conclude that detecting the presence of A. actinomycetemcomitans, S. parasanguinis, and F. alocis together indicates sites of future BL in LAP. A synergistic interaction of this consortium in LAP causation is possible and is the subject of ongoing research.
Collapse
|
12
|
Stevens RH, Moura Martins Lobo dos Santos CD, Zuanazzi D, Accioly Mattos MBD, Ferreira DF, Kachlany SC, Tinoco EM. Prophage induction in lysogenic Aggregatibacter actinomycetemcomitans cells co-cultured with human gingival fibroblasts, and its effect on leukotoxin release. Microb Pathog 2013; 54:54-9. [DOI: 10.1016/j.micpath.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|
13
|
Reinholdt J, Poulsen K, Brinkmann CR, Hoffmann SV, Stapulionis R, Enghild JJ, Jensen UB, Boesen T, Vorup-Jensen T. Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: interactions with human β2 integrins and erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:546-58. [PMID: 23234758 DOI: 10.1016/j.bbapap.2012.12.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 11/15/2012] [Accepted: 12/03/2012] [Indexed: 01/08/2023]
Abstract
Aggregatibacter actinomycetemcomitans is a gram-negative, facultatively anaerobic cocco-bacillus and a frequent member of the human oral flora. It produces a leukotoxin, LtxA, belonging to the repeats-in-toxin (RTX) family of bacterial cytotoxins. LtxA efficiently kills neutrophils and mononuclear phagocytes. The known receptor for LtxA on leukocytes is integrin α(L)β(2) (LFA-1 or CD11a/CD18). However, the molecular mechanisms involved in LtxA-mediated cytotoxicity are poorly understood, partly because LtxA has proven difficult to prepare for experiments as free of contaminants and with its native structure. Here, we describe a protocol for the purification of LtxA from bacterial culture supernatant, which does not involve denaturing procedures. The purified LtxA was monodisperse, well folded as judged by the combined use of synchrotron radiation circular dichroism spectroscopy (SRCD) and in silico prediction of the secondary structure content, and free of bacterial lipopolysaccharide. The analysis by SRCD and similarity to a lipase from Pseudomonas with a known three dimensional structure supports the presence of a so-called beta-ladder domain in the C-terminal part of LtxA. LtxA rapidly killed K562 target cells transfected to express β(2) integrin. Cells expressing α(M)β(2) (CD11b/CD18) or α(X)β(2) (CD11c/CD18) were killed as efficiently as cells expressing α(L)β(2). Erythrocytes, which do not express β(2) integrins, were lysed more slowly. In ligand blotting experiments, LtxA bound only to the β(2) chain (CD18). These data support a previous suggestion that CD18 harbors the major binding site for LtxA as well as identifies integrins α(M)β(2) and α(X)β(2) as novel receptors for LtxA.
Collapse
|
14
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Kachlany SC. Aggregatibacter actinomycetemcomitans leukotoxin: from threat to therapy. J Dent Res 2010; 89:561-70. [PMID: 20200418 DOI: 10.1177/0022034510363682] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that colonizes the human oral cavity and is the causative agent for localized aggressive periodontitis (LAP), an aggressive form of periodontal disease that occurs in adolescents. A. actinomycetemcomitans secretes a protein toxin, leukotoxin (LtxA), which helps the bacterium evade the host immune response during infection. LtxA is a membrane-active toxin that specifically targets white blood cells (WBCs). In this review, we discuss recent developments in this field, including the identification and characterization of genes and proteins involved in secretion, regulation of LtxA, biosynthesis, newly described activities of LtxA, and how LtxA may be used as a therapy for the treatment of diseases.
Collapse
Affiliation(s)
- S C Kachlany
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA.
| |
Collapse
|
16
|
Prevalence and distribution of serotype-specific genotypes of Aggregatibacter actinomycetemcomitans in chronic periodontitis Brazilian subjects. Arch Oral Biol 2010; 55:242-8. [DOI: 10.1016/j.archoralbio.2010.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 01/05/2010] [Accepted: 01/25/2010] [Indexed: 11/18/2022]
|
17
|
Morran MP, Alexander LA, Slotterbeck BD, McInerney MF. Dysfunctional innate immune responsiveness toPorphyromonas gingivalislipopolysaccharide in diabetes. ACTA ACUST UNITED AC 2009; 24:331-9. [DOI: 10.1111/j.1399-302x.2009.00522.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Guentsch A, Puklo M, Preshaw PM, Glockmann E, Pfister W, Potempa J, Eick S. Neutrophils in chronic and aggressive periodontitis in interaction with Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. J Periodontal Res 2009; 44:368-77. [PMID: 19210340 DOI: 10.1111/j.1600-0765.2008.01113.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE This study analyzed the interaction of Porphyromonas gingivalis ATCC 33277 and Aggregatibacter actinomycetemcomitans Y4 with peripheral blood polymorphonuclear neutrophils taken from patients with aggressive periodontitis and chronic periodontitis. MATERIAL AND METHODS Peripheral blood polymorphonuclear neutrophils obtained from 12 patients with chronic periodontitis, six patients with aggressive periodontitis and 12 healthy controls were exposed to P. gingivalis and A. actinomycetemcomitans following opsonization of the bacteria using the patient's own serum. Serum immunoglobulin G (IgG) levels against both periodontopathogens were measured. Phagocytosis and killing of the bacteria, as well as the extracellular human neutrophil elastase activity, were quantified. The total amount and the extracellular release of reactive oxygen species were measured using luminol-dependent and isoluminol-dependent chemiluminescence. RESULTS Polymorphonuclear neutrophils from patients with chronic (62.16 +/- 19.39%) and aggressive (43.26 +/- 26.63%) periodontitis phagocytosed more P. gingivalis than the healthy controls (24.43 +/- 19.87%) at the 30-min time point after exposure to the bacteria (p < 0.05). High serum IgG levels against P. gingivalis and A. actinomycetemcomitans were detected in subjects with periodontitis. Polymorphonuclear neutrophils from subjects with chronic and aggressive periodontitis released significantly more reactive oxygen species and demonstrated greater human neutrophil elastase activity in the absence of any stimulus than polymorphonuclear neutrophils from healthy controls (p < 0.05). Polymorphonuclear neutrophils in chronic periodontitis released significantly more reactive oxygen species when exposed to P. gingivalis and A. actinomycetemcomitans than polymorphonuclear neutrophils in aggressive periodontitis. CONCLUSION High serum IgG levels against P. gingivalis and A. actinomycetemcomitans promote phagocytosis in periodontitis. The extracellular release of reactive oxygen species and neutrophil elastase by polymorphonuclear neutrophils may also contribute to damage of the surrounding periodontal tissues.
Collapse
Affiliation(s)
- A Guentsch
- Department of Conservative Dentistry, University Hospital, Friedrich-Schiller-University Jena, Jena, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Inoue T, Fukui K, Ohta H. LEUKOTOXIN PRODUCTION BY ACTINOBACILLUS ACTINOMYCETEMCOMITANS. TOXIN REV 2008. [DOI: 10.1080/15569540500320839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Membrane morphology and leukotoxin secretion are associated with a novel membrane protein of Aggregatibacter actinomycetemcomitans. J Bacteriol 2008; 190:5972-80. [PMID: 18621903 DOI: 10.1128/jb.00548-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria display either a flat or an irregular outer membrane. The periodontal pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans has an irregular outer membrane. We have identified a gene that is associated with the biogenesis of this morphology. The gene is part of a three-gene operon and codes for a 141-kDa protein designated morphogenesis protein C (MorC), which is conserved in several gram-negative bacteria including Haemophilus influenzae and Pasteurella multocida. Insertional inactivation of this gene resulted in the conversion of an irregularly shaped membrane to a flat membrane. Associated with this morphological change were the autoaggregation of the bacteria during planktonic growth and a concomitant increase in the surface hydrophobicity of the bacterium. The absence of MorC also resulted in the loss of the secretion of leukotoxin but not the ltxA transcription. Our findings suggest that MorC is critical for membrane morphology and leukotoxin secretion in A. actinomycetemcomitans.
Collapse
|
21
|
Screen for leukotoxin mutants in Aggregatibacter actinomycetemcomitans: genes of the phosphotransferase system are required for leukotoxin biosynthesis. Infect Immun 2008; 76:3561-8. [PMID: 18541661 DOI: 10.1128/iai.01687-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aggregatibacter (formerly Actinobacillus) actinomycetemcomitans is a pathogen that causes localized aggressive periodontitis and extraoral infections including infective endocarditis. Recently, we reported that A. actinomycetemcomitans is beta-hemolytic on certain growth media due to the production of leukotoxin (LtxA). Based on this observation and our ability to generate random transposon insertions in A. actinomycetemcomitans, we developed and carried out a rapid screen for LtxA mutants. Using PCR, we mapped several of the mutations to genes that are known or predicted to be required for LtxA production, including ltxA, ltxB, ltxD, and tdeA. In addition, we identified an insertion in a gene previously not recognized to be involved in LtxA biosynthesis, ptsH. ptsH encodes the protein HPr, a phosphocarrier protein that is part of the sugar phosphotransferase system. HPr results in the phosphorylation of other proteins and ultimately in the activation of adenylate cyclase and cyclic AMP (cAMP) production. The ptsH mutant showed only partial hemolysis on blood agar and did not produce LtxA. The phenotype was complemented by supplying wild-type ptsH in trans, and real-time PCR analysis showed that the ptsH mutant produced approximately 10-fold less ltxA mRNA than the wild-type strain. The levels of cAMP in the ptsH mutant were significantly lower than in the wild-type strain, and LtxA production could be restored by adding exogenous cAMP to the culture.
Collapse
|
22
|
Dileepan T, Kachlany SC, Balashova NV, Patel J, Maheswaran SK. Human CD18 is the functional receptor for Aggregatibacter actinomycetemcomitans leukotoxin. Infect Immun 2007; 75:4851-6. [PMID: 17635865 PMCID: PMC2044523 DOI: 10.1128/iai.00314-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aggregatibacter (Actinobacillus) actinomycetemcomitans is the causative organism of localized aggressive periodontitis, a rapidly progressing degenerative disease of the gingival and periodontal ligaments, and is also implicated in causing subacute infective endocarditis in humans. The bacterium produces a variety of virulence factors, including an exotoxic leukotoxin (LtxA) that is a member of the repeats-in-toxin (RTX) family of bacterial cytolysins. LtxA exhibits a unique specificity to macrophages and polymorphonuclear cells of humans and other primates. Human lymphocyte function-associated antigen 1 (LFA-1) has been implicated as the putative receptor for LtxA. Human LFA-1 comprises the CD11a and CD18 subunits. It is not clear, however, which of its subunits serves as the functional receptor that confers species-specific susceptibility to LtxA. Here we demonstrate that the human CD18 is the receptor for LtxA based on experiments performed with chimeric beta2-integrins recombinantly expressed in a cell line that is resistant to LtxA effects. In addition, we show that the cysteine-rich tandem repeats encompassing integrin-epidermal growth factor-like domains 2, 3, and 4 of the extracellular region of human CD18 are critical for conferring susceptibility to LtxA-induced biological effects.
Collapse
Affiliation(s)
- T Dileepan
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Avenue, St. Paul, MN 55108, USA
| | | | | | | | | |
Collapse
|
23
|
Kilian M, Frandsen EVG, Haubek D, Poulsen K. The etiology of periodontal disease revisited by population genetic analysis. Periodontol 2000 2006; 42:158-79. [PMID: 16930310 DOI: 10.1111/j.1600-0757.2006.00159.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mogens Kilian
- Department of Bacteriology, Institute of Medical Microbiology and Immunology, University of Aarhus, Aarhus, Denmark
| | | | | | | |
Collapse
|
24
|
Haubek D, Havemose-Poulsen A, Westergaard J. Aggressive periodontitis in a 16-year-old Ghanaian adolescent, the original source of Actinobacillus actinomycetemcomitans strain HK1651 - a 10-year follow up. Int J Paediatr Dent 2006; 16:370-5. [PMID: 16879336 DOI: 10.1111/j.1365-263x.2006.00735.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The highly leukotoxic JP2 clone of Actinobacillus actinomycetemcomitans is strongly associated with periodontitis in adolescents. Availability of the DNA sequence of the complete genome of A. actinomycetemcomitans strain HK1651, a representative strain of the JP2 clone (http://www.genome.ou.edu/act.html), has provided new possibilities in basic research regarding the understanding of the pathogenesis of A. actinomycetemcomitans in periodontitis. This case report describes the periodontal treatment of the original source of A. actinomycetemcomitans HK1651, a 16-year-old Ghanaian adolescent girl with aggressive periodontitis. The bacterial examination involved polymerase chain reaction analysis for presence of JP2 and non-JP2 types of A. actinomycetemcomitans. The treatment, including periodontal surgery supplemented by antibiotics, arrested the progression of periodontitis for more than 10 years. Initially, infection by A. actinomycetemcomitans, including the JP2 clone, was detected at various locations in the oral cavity and was not limited to the periodontal pockets. Post-therapy, the JP2 clone of A. actinomycetemcomitans disappeared, while the non-JP2 types of A. actinomycetemcomitans remained a part of the oral microflora.
Collapse
Affiliation(s)
- D Haubek
- Department of Community Oral Health and Pediatric Dentistry, School of Dentistry University of Aarhus, Denmark.
| | | | | |
Collapse
|
25
|
Haraszthy VI, Jordan SF, Zambon JJ. Identification of Fur-regulated genes in Actinobacillus actinomycetemcomitans. Microbiology (Reading) 2006; 152:787-796. [PMID: 16514158 DOI: 10.1099/mic.0.28366-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Actinobacillus actinomycetemcomitans is an oral pathogen that causes aggressive periodontitis as well as sometimes life-threatening, extra-oral infections. Iron regulation is thought to be important in the pathogenesis of A. actinomycetemcomitans infections and, consistent with this hypothesis, the fur gene has recently been identified and characterized in A. actinomycetemcomitans. In this study, 14 putatively Fur-regulated genes were identified by Fur titration assay (Furta) in A. actinomycetemcomitans, including afuA, dgt, eno, hemA, tbpA, recO and yfe – some of which are known to be Fur regulated in other species. A fur mutant A. actinomycetemcomitans strain was created by selecting for manganese resistance in order to study the Fur regulon. Comparisons between the fur gene sequences revealed that nucleotide 66 changed from C in the wild-type to T in the mutant strain, changing leucine to isoleucine. The fur mutant strain expressed a nonfunctional Fur protein as determined by Escherichia coli-based ferric uptake assays and Western blotting. It was also more sensitive to acid stress and expressed higher levels of minC than the wild-type strain. minC, which inhibits cell division in other bacterial species and whose regulation by iron has not been previously described, was found to be Fur regulated in A. actinomycetemcomitans by Furta, by gel shift assays, and by RT-qPCR assays for gene expression.
Collapse
Affiliation(s)
- Violet I Haraszthy
- Department of Restorative Dentistry, University at Buffalo, School of Dental Medicine, Buffalo, NY 14214, USA
| | - Shawn F Jordan
- Department of Restorative Dentistry, University at Buffalo, School of Dental Medicine, Buffalo, NY 14214, USA
| | - Joseph J Zambon
- Department of Periodontics and Endodontics, University at Buffalo, School of Dental Medicine, Buffalo, NY 14214, USA
| |
Collapse
|
26
|
Diaz R, Ghofaily LA, Patel J, Balashova NV, Freitas AC, Labib I, Kachlany SC. Characterization of leukotoxin from a clinical strain of Actinobacillus actinomycetemcomitans. Microb Pathog 2006; 40:48-55. [PMID: 16414241 DOI: 10.1016/j.micpath.2005.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 10/25/2022]
Abstract
Actinobacillus actinomycetemcomitans is a Gram negative pathogen that is the etiologic agent of localized aggressive periodontitis (LAP), a rapidly progressing and severe disease of the oral cavity that affects predominantly adolescents. A. actinomycetemcomitans is also found in extraoral infections including infective endocarditis. As one of its many virulence determinants, A. actinomycetemcomitans produces the RTX (repeats in toxin) exotoxin, leukotoxin (LtxA). LtxA specifically kills leukocytes of humans and Old World Monkeys. All of our current knowledge of A. actinomycetemcomitans LtxA is based on the protein from strain JP2, a nonadherent laboratory isolate. Because laboratory isolates can lose virulence properties, we wished to examine LtxA from a clinical isolate, NJ4500. We show that localization patterns of LtxA do not differ between the strains. Subcellular localization studies with NJ4500 revealed that LtxA localizes to the outer membrane and that the interaction between LtxA and the surface of cells is specific. Surface localized LtxA was not removed with NaCl treatment and protease protection experiments revealed that approximately 10 kDa of LtxA is exposed. We purified secreted LtxA from NJ4500 and found that the specific activity of this toxin was greater than that of secreted LtxA from JP2. For other RTX toxins, fatty acid modification affects toxin activity, and A. actinomycetemcomitans LtxA is predicted to be modified. We show by two-dimensional gel electrophoresis that NJ4500 LtxA is more highly modified than JP2 LtxA, suggesting that the difference in activities could be due to differential modification. Studies of A. actinomycetemcomitans pathogenesis should therefore consider LtxA from clinical isolates.
Collapse
Affiliation(s)
- Roger Diaz
- Department of Oral Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, 185 S. Orange Avenue, Medical Science Building C-636, Newark, NJ 07103, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Nalbant A, Chen C, Wang Y, Zadeh HH. Induction of T-cell apoptosis by Actinobacillus actinomycetemcomitans mutants with deletion of ltxA and cdtABC genes: possible activity of GroEL-like molecule. ACTA ACUST UNITED AC 2004; 18:339-49. [PMID: 14622339 DOI: 10.1046/j.0902-0055.2003.00082.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The pathogenic bacterium Actinobacillus actinomycetemcomitans expresses a leukotoxin (Ltx) and cytolethal distending toxin (CDT) with cytolytic properties. CDT also has cytostatic properties, inducing a G2 cell cycle block. The extent of the contribution of these, as well as other toxins, to the cytolytic and cytostatic activities of this microorganism have not been defined and the aim of this study was to determine their contribution. To that end, a naturally transformable A. actinomycetemcomitans clinical strain (D7S-smooth) was used to construct a series of deletion mutants (DeltacdtA, DeltacdtB, DeltacdtC, DeltacdtABC, DeltaltxA, DeltaltxA/DeltacdtABC). Human peripheral blood mononuclear cells were incubated with cell-associated and extracellular bacterial preparations. The ability of wild type and isogenic mutants to induce T-cell apoptosis and cell cycle arrest was compared. The expression of ltxA and each of the cdt gene loci partially contributed to A. actinomycetemcomitans apoptosis, since each of the isogenic mutants exhibited reduced ability to induce T-cell apoptosis. Conversely, the ability to induce cell cycle block was abolished in each of the cdt isogenic mutants. A mutant with simultaneous deletion of ltxA and cdtABC genes retained potent ability to induce apoptosis in its cell-associated, but not extracellular, preparation. Neutralization with Escherichia coli anti-GroEL monoclonal antibody, lead to significant diminution of apoptosis-inducing activity of the DeltaltxA/DeltacdtABC cell-associated preparation. These data provide evidence for the expression of other A. actinomycetemcomitans cytolytic molecule(s) distinct from CDT and leukotoxin, with a possible role for GroEL-like molecule in T-cell apoptosis.
Collapse
Affiliation(s)
- A Nalbant
- Immune Response Laboratory, Division of Diagnostic Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | |
Collapse
|
28
|
Ushiba Y, Ohta H. Ecophysiology of the Oral Opportunistic Pathogen Actinobacillus actinomycetemcomitans with Special Emphasis on Leukotoxin Production. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yuuji Ushiba
- Department of Bioresource Science, Ibaraki University College of Agriculture
| | - Hiroyuki Ohta
- Department of Bioresource Science, Ibaraki University College of Agriculture
| |
Collapse
|
29
|
Abstract
Aggressive periodontitis is characterized by a considerable attachment loss over a relatively short period of time. It may be the consequence of either the presence of highly aggressive pathogens or a highly susceptible host. In the first case, the use of antimicrobials should be beneficial in the treatment of those patients. However, due to the organization of the micro-organisms as a biofilm, the increasing incidence of allergies and resistance against antimicrobials and their side-effects, there is still controversy about their benefit in the treatment of periodontal disease. This paper discusses indications for the use of antimicrobials, the substances prescribed and the type of application under the conditions of aggressive periodontitis.
Collapse
Affiliation(s)
- C E Dörfer
- Department Conservative Dentistry and Periodontology, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
30
|
Dahlén G, Widar F, Teanpaisan R, Papapanou PN, Baelum V, Fejerskov O. Actinobacillus actinomycetemcomitans in a rural adult population in southern Thailand. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:137-42. [PMID: 12030964 DOI: 10.1034/j.1399-302x.2002.170301.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The prevalence of Actinobacillus actinomycetemcomitans isolates was examined in a rural population of southern Thailand. Sixty individuals aged 30-39 and 50-59 years were randomly selected from a group of 363 persons, living in four villages, who had been clinically examined previously. A subgingival plaque sample was taken with a curette from the mesial aspect of the two upper and lower first molars. Each sample was dispersed in 3.3 ml of VMGA III transport medium and spread onto Trypticase Soy Broth with Bacitracin and Vancomycin (TSBV)-agar plates on the same day. After incubation in 10% CO2 for 5 days the plates were examined for typical A. actinomycetemcomitans colonies which were tested for catalase activity. Each strain was further tested for biochemical characteristics, serotyped against serotype-specific antisera a-e and ribotyped after DNA digestion using the restriction endonucleases HindIII and EcoRI. For 53 (88%) of the 60 individuals, A. actinomycetemcomitans was present in at least one subgingival sample, which is considerably higher than the prevalence in Western European adults. In 11 individuals, two or three different strains were found. Serotypes a and c were the most prevalent, and serotype b was found only once among 46 tested isolates. Eleven ribotypes were found among the 46 strains. While the same ribotype could be found among individuals of the same village, no ribotype of A. actinomycetemcomitans was unique for individuals of any one village. The study demonstrated a high prevalence of A. actinomycetemcomitans among adults of the rural population of southern Thailand and indicates that this species is present as part of the resident oral flora in this population.
Collapse
Affiliation(s)
- Gunnar Dahlén
- Department of Oral Microbiology, Faculty of Odontology, Göteborg University, Box 450, SE 40530 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
31
|
Colombo APV, Teles RP, Torres MC, Souto R, Rosalém WJ, Mendes MCS, Uzeda M. Subgingival microbiota of Brazilian subjects with untreated chronic periodontitis. J Periodontol 2002; 73:360-9. [PMID: 11990436 DOI: 10.1902/jop.2002.73.4.360] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Different periodontopathogenic microbiota have been associated with periodontal diseases in several populations. The present investigation determined the subgingival microbiota of untreated chronic periodontitis Brazilians using the checkerboard DNA-DNA hybridization technique. METHODS Twenty-five periodontitis patients (mean age, 41 +/- 2; mean probing depth [PD], 3.3 +/- 0.2; mean attachment level [AL], 3.6 +/- 0.2) with no history of previous periodontal therapy and a control group of 14 healthy subjects (mean age, 34 +/- 0.6; mean PD, 1.8 +/- 0.2; mean AL, 1.7 +/- 0.1) were selected. Measurements of PD, AL, bleeding on probing, plaque accumulation, and suppuration were recorded at 6 sites/tooth. Subgingival plaque samples were obtained from 4 sites in each tooth/subject in both groups. The presence and levels of 41 subgingival species were determined in 4,032 plaque samples using whole genomic DNA probes and the checkerboard method. RESULTS Periodontal pathogens, as well as some unusual species (E. faecalis, E. coli and Bartonella sp.), were detected significantly more often and/or in higher levels in the periodontitis group (P < 0.05). Most species were more frequently detected in interproximal sites. B. forsythus, P. gingivalis, E. nodatum, and F. nucleatum ss vincentii showed a significant positive correlation with mean PD and AL (P < 0.05). CONCLUSIONS The subgingival microbiota of Brazilians with untreated chronic periodontitis were complex, including high proportions of periodontopathogens commonly found in other populations, as well as some unusual species.
Collapse
Affiliation(s)
- Ana Paula V Colombo
- Departamento de Microbiologia Médica, Universidade Federal do Rio de Janeiro (UFRJ), Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Inoue T, Tanimoto I, Tada T, Ohashi T, Fukui K, Ohta H. Fermentable-sugar-level-dependent regulation of leukotoxin synthesis in a variably toxic strain of Actinobacillus actinomycetemcomitans. MICROBIOLOGY (READING, ENGLAND) 2001; 147:2749-2756. [PMID: 11577154 DOI: 10.1099/00221287-147-10-2749] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Actinobacillus actinomycetemcomitans, a Gram-negative periodontopathic bacterium, produces a leukotoxin belonging to the RTX family. The production of leukotoxin varies greatly among different strains of this species and under different culture conditions. A toxin-production-variable strain, 301-b, stably produces significant amounts of leukotoxin in anaerobic fructose-limited chemostat cultures, but does not do so in the presence of excess fructose. This communication describes the cloning and sequencing of the leukotoxin promoter region from 301-b, showing that this strain has a promoter region similar to that from strain 652, a moderately toxic strain. Northern blot analysis using a leukotoxin gene probe demonstrated that change in toxin production in response to the level of external fructose was due to alteration in the transcriptional level of the leukotoxin gene. Pulsing of fructose into the fructose-limited chemostat culture remarkably reduced the intracellular cAMP level from 40 pmol (mg dry wt cells)(-1) to 3.1 pmol (mg dry wt cells)(-1), which was restored when the culture was returned to fructose-limited conditions. Further, it was found that addition of external cAMP to the culture with excess fructose resulted in an apparent recovery of leukotoxin production. Taken together, these findings indicate that a cAMP-dependent mechanism, possibly a catabolite-repression-like system, may be involved in the regulation of leukotoxin production in this bacterium.
Collapse
Affiliation(s)
- Tetsuyoshi Inoue
- Departments of Microbiology1, Preventive Dentistry2 and Periodontology and Endodontology3, Okayama University Dental School, Shikata-cho 2-chome, Okayama 700-8525, Japan
| | - Ichiro Tanimoto
- Departments of Microbiology1, Preventive Dentistry2 and Periodontology and Endodontology3, Okayama University Dental School, Shikata-cho 2-chome, Okayama 700-8525, Japan
| | - Tohru Tada
- Departments of Microbiology1, Preventive Dentistry2 and Periodontology and Endodontology3, Okayama University Dental School, Shikata-cho 2-chome, Okayama 700-8525, Japan
| | - Toshio Ohashi
- Departments of Microbiology1, Preventive Dentistry2 and Periodontology and Endodontology3, Okayama University Dental School, Shikata-cho 2-chome, Okayama 700-8525, Japan
| | - Kazuhiro Fukui
- Departments of Microbiology1, Preventive Dentistry2 and Periodontology and Endodontology3, Okayama University Dental School, Shikata-cho 2-chome, Okayama 700-8525, Japan
| | - Hiroyuki Ohta
- Laboratory of Microbial Ecology, Department of Bioresource Science, Ibaraki University School of Agriculture, Ami-machi, Ibaraki 300-0393, Japan4
| |
Collapse
|
33
|
Loesche WJ, Grossman NS. Periodontal disease as a specific, albeit chronic, infection: diagnosis and treatment. Clin Microbiol Rev 2001; 14:727-52, table of contents. [PMID: 11585783 PMCID: PMC89001 DOI: 10.1128/cmr.14.4.727-752.2001] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Periodontal disease is perhaps the most common chronic infection in adults. Evidence has been accumulating for the past 30 years which indicates that almost all forms of periodontal disease are chronic but specific bacterial infections due to the overgrowth in the dental plaque of a finite number of mostly anaerobic species such as Porphyromonas gingivalis, Bacteroides forsythus, and Treponema denticola. The success of traditional debridement procedures and/or antimicrobial agents in improving periodontal health can be associated with the reduction in levels of these anaerobes in the dental plaque. These findings suggest that patients and clinicians have a choice in the treatment of this overgrowth, either a debridement and surgery approach or a debridement and antimicrobial treatment approach. However, the antimicrobial approach, while supported by a wealth of scientific evidence, goes contrary to centuries of dental teaching that states that periodontal disease results from a "dirty mouth." If periodontal disease is demonstrated to be a risk factor for cardiovascular disease and stroke, it will be a modifiable risk factor since periodontal disease can be prevented and treated. Since the antimicrobial approach may be as effective as a surgical approach in the restoration and maintenance of a periodontally healthy dentition, this would give a cardiac or stroke patient and his or her physician a choice in the implementation of treatment seeking to improve the patient's periodontal condition so as to reduce and/or delay future cardiovascular events.
Collapse
Affiliation(s)
- W J Loesche
- Department of Microbiology and Immunology, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
34
|
Guthmiller JM, Lally ET, Korostoff J. Beyond the specific plaque hypothesis: are highly leukotoxic strains of Actinobacillus actinomycetemcomitans a paradigm for periodontal pathogenesis? CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2001; 12:116-24. [PMID: 11345522 DOI: 10.1177/10454411010120020201] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Actinobacillus actinomycetemcomitans is a facultative anaerobe implicated in a variety of periodontal diseases. Its presence is most closely associated with localized juvenile periodontitis (LIP), although the exact role of the organism in this and other periodontal diseases is not entirely clear. While A. actinomycetemcomitans produces several different putative virulence factors, the most widely studied is the leukotoxin. The leukotoxin selectively kills polymorphonuclear leukocytes and macrophages in vitro, constituting the host's first line of defense. Interestingly, even though all strains of A. actinomycetemcomitans have the genes encoding the leukotoxin, there is variability in leukotoxin expression. Differences in the structure of the promoter region of the leukotoxin gene operon were shown to correlate directly with levels of leukotoxin production. Highly leukotoxic forms appear to exhibit increased pathogenic potential, as evidenced by recent studies that have shown a significant association between the prevalence of such strains and the occurrence of LIP in several different populations. This represents the first demonstration of an association between a particular subset of a pathogenic species and a specific periodontal disease. Early identification of A. actinomycetemcomitans by microbial and genetic assays to evaluate leukotoxicity may enhance the efficacy of preventive and/or therapeutic techniques. Future investigations should continue to evaluate pathogenic variations of additional virulence factors expressed in vivo, not only of A. actinomycetemcomitans, but also of other periodontal bacteria and infectious disease pathogens.
Collapse
Affiliation(s)
- J M Guthmiller
- Department of Periodontics and Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City 52242-1001, USA.
| | | | | |
Collapse
|
35
|
Tan KS, Woo CH, Ong G, Song KP. Prevalence of Actinobacillus actinomycetemcomitans in an ethnic adult Chinese population. J Clin Periodontol 2001; 28:886-90. [PMID: 11493360 DOI: 10.1034/j.1600-051x.2001.028009886.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM The aim of this study was to determine the prevalence and the structure of the leukotoxin promoter region of Actinobacillus actinomycetemcomitans in an ethnic Chinese population. METHOD Subgingival plaque samples were collected from 42 patients with moderate to advanced periodontitis and 50 periodontally healthy patients. A. actinomycetemcomitans was detected directly from the crude subgingival plaque by PCR using leukotoxin gene specific primers. The presence of A. actinomycetemcomitans was determined by a single 285 bp PCR amplicon. RESULTS A. actinomycetemcomitans was found to be present in the subgingival plaque of 68 out of a total of 92 patients examined (74%). 29 out of the 42 periodontitis patients tested were carriers of A. actinomycetemcomitans (69%). Among the periodontally healthy patients studied, 39 out of 50 subjects possessed the bacteria (78%). PCR analysis of the promoter region of the ltx operon revealed that none of the 42 moderate to advanced periodontitis patients examined harboured A. actinomycetemcomitans strains with the JP2-like promoter of the ltx operon, known to enhance leukotoxin expression. 2 out of the 27 advanced periodontitis patients clinically diagnosed as suffering from rapidly progressive periodontitis were found to be carriers of the mildly toxic strain of A. actinomycetemcomitans with the characteristic 652-like promoter. CONCLUSIONS The high prevalence of A. actinomycetemcomitans, regardless of whether the subgingival samples were analysed from patients with healthy or diseased periodontium suggests that this bacterial species is part of the normal oral flora of ethnic Chinese. Our preliminary results also suggested that subjects who harboured the mildly toxic strain of A. actinomycetemcomitans were potentially susceptible to aggressive forms of periodontitis.
Collapse
Affiliation(s)
- K S Tan
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
36
|
Haubek D, Ennibi OK, Poulsen K, Poulsen S, Benzarti N, Kilian M. Early-onset periodontitis in Morocco is associated with the highly leukotoxic clone of Actinobacillus actinomycetemcomitans. J Dent Res 2001; 80:1580-3. [PMID: 11499517 DOI: 10.1177/00220345010800062001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A particular clone (JP2) of Actinobacillus actinomycetemcomitans with increased leukotoxin production has been isolated from individuals with early-onset periodontitis (EOP). The aim of this study was to determine the frequency of carriers of this clone and its association with EOP in Moroccan schoolchildren. Of 217 plaque samples, 131 (60.4%) were culture-positive for A. actinomycetemcomitans. A total of 19 of these isolates had a 530-bp deletion in the leukotoxin promoter region characteristic of the JP2 clone. A strong association between the presence of A. actinomycetemcomitans with the 530-bp deletion and EOP was found (adjusted OR = 29.4; 95% Cl = 8.3 - 104.4; p < 0.0005), while no association could be demonstrated between the presence of A. actinomycetemcomitans without the deletion and EOP (adjusted OR = 1.3; 95% CI = 0.5 -2.9; p = 0.750). The study demonstrates that the endemic presence, in a human population, of the highly leukotoxic JP2 clone may result in an unusually high prevalence of EOP.
Collapse
Affiliation(s)
- D Haubek
- Department of Community Oral Health and Pediatric Dentistry, Dental School, Faculty of Health Sciences, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
37
|
Leukotoxic Activity of Actinobacillus actinomycetemcomitans Isolated from Brazilian Periodontal Patients. Anaerobe 2000. [DOI: 10.1006/anae.2000.0357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
He T, Nishihara T, Demuth DR, Ishikawa I. A novel insertion sequence increases the expression of leukotoxicity in Actinobacillus actinomycetemcomitans clinical isolates. J Periodontol 1999; 70:1261-8. [PMID: 10588488 DOI: 10.1902/jop.1999.70.11.1261] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The expression of leukotoxin varies among Actinobacillus actinomycetemcomitans strains and is dependent in part on the structure of the ltx promoter region. Highly leukotoxic strains, characterized by a 530 base pair (bp) deletion within the ltx promoter, have been associated with juvenile periodontitis in the United States and Europe. In the present study, we analyzed the ltx promoter structure to elucidate whether A. actinomycetemcomitans from Japanese periodontitis patients exhibits the highly toxic phenotype. METHODS Forty-five A. actinomycetemcomitans strains, including 43 clinical isolates, the highly leukotoxic strain JP2, and a minimally leukotoxic strain 652 were used in the study. The ltx promoter structure was analyzed by polymerase chain reaction (PCR), with oligonucleotide primers focusing the ltx promoter region, and nucleotide sequencing. Leukotoxic activity was determined by trypan blue exclusion. Western blotting assay was performed to detect the level of leukotoxin polypeptide. RESULTS A 495 bp PCR product was amplified from JP2, a 1025 bp product from 652 and 41 of the clinical isolates, and a 1926 bp product from the remaining two clinical isolates (AaIS1, AaIS2). Sequencing of the 1926 bp PCR fragment showed that it was similar to that of strain 652 but contained an 886 bp region that was identified as an insertion sequence (IS). Both AaIs strains expressed high levels of leukotoxicity, similar to strain JP2. In addition, a mutant (AaIS-) that had lost the IS element expressed a significantly lower level of leukotoxicity compared with AaIS strains. Furthermore, the levels of leukotoxin polypeptide expressed by these strains were consistent with their whole cell leukotoxicity. CONCLUSIONS A. actinomycetemcomitans clinical strains which were isolated from Japanese periodontitis patients do not possess the 530 bp ltx promoter deletion. The results of this study suggest that a high level of leukotoxin expression correlates with the insertion of the transposable DNA element.
Collapse
Affiliation(s)
- T He
- Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
| | | | | | | |
Collapse
|
39
|
Zadeh HH, Nichols FC, Miyasaki KT. The role of the cell-mediated immune response to Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in periodontitis. Periodontol 2000 1999; 20:239-88. [PMID: 10522228 DOI: 10.1111/j.1600-0757.1999.tb00163.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- H H Zadeh
- Department of Periodontology, School of Dentistry, University of Southern California, Los Angeles, USA
| | | | | |
Collapse
|
40
|
Grossi SG, Genco RJ. Periodontal disease and diabetes mellitus: a two-way relationship. ANNALS OF PERIODONTOLOGY 1998; 3:51-61. [PMID: 9722690 DOI: 10.1902/annals.1998.3.1.51] [Citation(s) in RCA: 440] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Severe periodontal disease often coexists with severe diabetes mellitus. Diabetes is a risk factor for severe periodontal disease. A model is presented whereby severe periodontal disease increases the severity of diabetes mellitus and complicates metabolic control. We propose that an infection-mediated upregulation cycle of cytokine synthesis and secretion by chronic stimulus from lipopolysaccharide (LPS) and products of periodontopathic organisms may amplify the magnitude of the advanced glycation end product (AGE)-mediated cytokine response operative in diabetes mellitus. In this model, the combination of these 2 pathways, infection and AGE-mediated cytokine upregulation, helps explain the increase in tissue destruction seen in diabetic periodontitis, and how periodontal infection may complicate the severity of diabetes and the degree of metabolic control, resulting in a 2-way relationship between diabetes mellitus and periodontal disease/infection. This proposed dual pathway of tissue destruction suggests that control of chronic periodontal infection is essential for achieving long-term control of diabetes mellitus. Evidence is presented to support the hypothesis that elimination of periodontal infection by using systemic antibiotics improves metabolic control of diabetes, defined by reduction in glycated hemoglobin or reduction in insulin requirements.
Collapse
Affiliation(s)
- S G Grossi
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, USA.
| | | |
Collapse
|
41
|
Dibart S, Eftimiadi C, Socransky S, Taubman MA, Van Dyke TE. Rapid evaluation of serum and gingival crevicular fluid immunoglobulin G subclass antibody levels in patients with early-onset periodontitis using checkerboard immunoblotting. ORAL MICROBIOLOGY AND IMMUNOLOGY 1998; 13:166-72. [PMID: 10093531 DOI: 10.1111/j.1399-302x.1998.tb00728.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method was developed to evaluate the presence of immunoglobulin G (IgG) subclass (1-4) antibody to Actinobacillus actinomycetemcomitans, serotype b (strain Y4) in patients with early-onset periodontitis on a single nitrocellulose membrane. Sera from 30 early-onset periodontitis patients and gingival crevicular fluid samples from 2 patients were collected and tested with four different preparations of A. actinomycetemcomitans (Y4). The principle steps of the assay are: a) binding of the bacterial antigen (Y4) and the anti-human IgG antibody (capture antibody) in parallel lanes on nitrocellulose membranes; b) incubation of known concentrations of the IgG subclasses 1, 2, 3 and 4, as well as a dilution of serum and/or gingival crevicular fluid from patients in lanes perpendicular to the antigen lanes; c) incubation of the membranes with the corresponding peroxidase conjugated anti-human IgG subclass secondary antibody; d) detection of positive signals by enhanced chemiluminescence. The blots were evaluated by visual comparison to a series of blots containing known concentrations of IgG subclasses. The method was used to rapidly screen a relatively large number of patient sera and gingival crevicular fluid samples for IgG subclasses in a cost-effective assay. The predominant IgG subclass found in early-onset periodontitis was IgG2.
Collapse
Affiliation(s)
- S Dibart
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
42
|
Haubek D, Dirienzo JM, Tinoco EM, Westergaard J, López NJ, Chung CP, Poulsen K, Kilian M. Racial tropism of a highly toxic clone of Actinobacillus actinomycetemcomitans associated with juvenile periodontitis. J Clin Microbiol 1997; 35:3037-42. [PMID: 9399490 PMCID: PMC230118 DOI: 10.1128/jcm.35.12.3037-3042.1997] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Actinobacillus actinomycetemcomitans strains with enhanced levels of production of leukotoxin are characterized by a 530-bp deletion from the promoter region of the leukotoxin gene operon. Previous isolates with this deletion constituted a single clone belonging to serotype b, although they displayed minor differences among each other. We have analyzed the geographic dissemination of this clone by examining 326 A. actinomycetemcomitans isolates from healthy and periodontally diseased individuals as well as from patients with different types of extraoral infections originating from countries worldwide. A total of 38 isolates, all belonging to the same clone, showed the 530-bp deletion. Comparison of a 440-bp sequence from the promoter region of the leukotoxin gene operon from 10 of these strains revealed complete identity, which indicates that the deletion originates from a single mutational event. This particular clone was exclusively associated with localized juvenile periodontitis (LJP). In at least 12 of 28 families from which the clone was isolated, more than one family member had LJP. Notably, all the subjects carrying this clone had a genetic affiliation with the African population. These observations suggest that juvenile periodontitis in some adolescents with an African origin is associated with a disseminating clone of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- D Haubek
- Department of Oral Biology, University of Aarhus, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Barretto Tinoco EM, Stevens R, Haubek D, Lai CH, Balachandran S, Preus H. Relationship of serotype, leukotoxin gene type and lysogeny in Actinobacillus actinomycetemcomitans to periodontal disease status. Eur J Oral Sci 1997; 105:310-7. [PMID: 9298362 DOI: 10.1111/j.1600-0722.1997.tb00246.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Actinobacillus actinomycetemcomitans has been associated with different forms of periodontitis, particularly with localized juvenile periodontitis (LJP). The bacterium possesses several virulence factors which have been shown to interact with the host immune system. Among these factors, leukotoxin, surface antigens (serotype) and bacteriophages have been suggested directly or indirectly to influence the course of infection. However, few studies have been able to show associations between these factors and periodontal disease, alone or in combination. Thus, the purpose of the present study was to investigate possible correlations between periodontal disease status and selected virulence factors (serotype, presence of bacteriophages, and the presence of a 530 bp deletion in the promoter region of the leukotoxin gene). 36 subjects took part in the study. Serotype c was the most frequently found serotype among periodontally affected subjects, although serotypes a and b were also present. 27 out of 36 strains harbored bacteriophages, and there was strong evidence that some of the bacteriophages were different from the previously characterized phi Aa phage. A. actinomycetemcomitans containing the F-fragment phage were more frequently associated with periodontal disease. Five strains, all serotype b, 3 from LJP patients and 2 from healthy subjects, showed a 530-bp deletion in the promoter region of the leukotoxin gene.
Collapse
Affiliation(s)
- E M Barretto Tinoco
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
44
|
Willi K, Sandmeier H, Asikainen S, Saarela M, Meyer J. Occurrence of temperate bacteriophages in different Actinobacillus actinomycetemcomitans serotypes isolated from periodontally healthy individuals. ORAL MICROBIOLOGY AND IMMUNOLOGY 1997; 12:40-6. [PMID: 9151643 DOI: 10.1111/j.1399-302x.1997.tb00365.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The occurrence of temperate bacteriophages was studied in 34 isolates of Actinobacillus actinomycetemcomitans derived from 27 periodontally healthy Finnish individuals both by lysis/plaque assays and by DNA hybridizations. In addition the serotype, the ribotype and the arbitrarily primed polymerase chain reaction (AP-PCR) profile were determined for each A. actinomycetemcomitans strain. Fourteen isolates showed hybridization patterns very similar to that of a known lysogen when probed with the genome of the previously characterized temperate phage Aa phi 23. Only 6 of these 14 strains had produced lysis or single plaques on suitable indicator strains. Phage Aa phi 247 derived from one of these lysogens was indistinguishable from Aa phi 23 by electron microscopy, and the genomes showed highly related DNA hybridization patterns. The remaining 20 isolates exhibited hybridization patterns very different from that of Aa phi 23 DNA. Seven of these strains also gave lysis or single plaques, suggesting that 21 of the 34 strains were lysogenic. These data indicate that the prophages per se do not represent a virulence factor exclusively associated with periodontal disease. Presence of an Aa phi 23-related prophage correlated with serotype a and AP-PCR type 1 of the bacterial host. This may indicate that Aa phi 23 and related phages have a limited host range.
Collapse
Affiliation(s)
- K Willi
- Department of Preventive Dentistry, Dental Institute, University of Basel, Switzerland
| | | | | | | | | |
Collapse
|
45
|
Mizoguchi K, Ohta H, Miyagi A, Kurihara H, Takashiba S, Kato K, Murayama Y, Fukui K. The regulatory effect of fermentable sugar levels on the production of leukotoxin by Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 1997; 146:161-6. [PMID: 8997720 DOI: 10.1111/j.1574-6968.1997.tb10187.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The relationship between sugar availability and RTX (repeats in toxin) cytotoxin (leukotoxin) production in the periodontopathic bacterium, Actinobacillus actinomycetemcomitans, was investigated using a chemostat. A actinomycetemcomitans 301-b produced significant amounts of leukotoxin in anaerobic fructose-limited chemostat cultures at a dilution rate of 0.15 h-1 and at pH 7.0. When the growth limitation was relieved by pulsing the cultures with 50 or 150 mM fructose (final concentrations), leukotoxin production immediately stopped and the amount of cellular leukotoxin decreased until the culture was returned to fructose-limited conditions. Leukotoxin synthesis was also repressed in the chemostat cultures by pulsing with glucose but not with the non-fermentable sugar analog, alpha-methyl-D-glucoside. Leukotoxin production was also repressed by fructose in chemostat cultures of ATCC 33384, which is generally recognized as a non-leukotoxin-producing or minimally leukotoxic strain.
Collapse
Affiliation(s)
- K Mizoguchi
- Department of Periodontology and Endodontology, Okayama University Dental School, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Affiliation(s)
- S Offenbacher
- Dental Research Center, University of North Carolina, Chapel Hill, USA
| |
Collapse
|
47
|
McArthur WP, Stroup S, McClellan S, Leung KP. Differentiation of the serotype b and species-specific antigens of Actinobacillus actinobacillus actinomycetemcomitans recognized by monoclonal antibodies. ORAL MICROBIOLOGY AND IMMUNOLOGY 1996; 11:209-19. [PMID: 9002872 DOI: 10.1111/j.1399-302x.1996.tb00172.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The serotype b antigens have been reported to be associated with lipopolysaccharide. Using murine monoclonal antibodies specific for either a serotype b antigen or the Actinobacillus actinomycetemcomitans species, the relationship of the two epitopes to lipopolysaccharide was determined. Both the species-specific and serotype b-specific monoclonal antibodies bound to whole cells, vesicles and conventionally isolated lipopolysaccharide and polysaccharide material derived from A. actinomycetemcomitans culture supernatants. Serotype b-specific monoclonal antibodies bound to the polysaccharide of acid-hydrolyzed lipopolysaccharide. Species-specific monoclonal antibodies bound to both the polysaccharide and the lipid A fraction of lipopolysaccharide after acid hydrolysis. Polymyxin b partially inhibited the binding of the species-specific monoclonal antibodies to lipopolysaccharide and had no effect on the binding of the serotype b-specific monoclonal antibodies to lipopolysaccharide. Lipopolysaccharide from whole bacteria and polysaccharide material isolated from culture supernatants were separated by gel filtration chromatography in deoxycholate into fractions that contained serotype b antigen, both serotype b and species-specific antigens, or species-specific antigen. SDS-polyacrylamide gel electrophoresis and Western blotting analysis of the fractions revealed that the serotype b antigen was on a high-molecular-weight polysaccharide material. The species-specific antigen was on a ladder of lower-molecular-weight polysaccharides identical to the blot pattern of lipopolysaccharide molecules separated by polyacrylamide gel electrophoresis and stained with silver stain. Chemical analysis of the polysaccharide containing serotype b antigen revealed 85% ribose, 11% glucose, and no lipid. Chemical content of the species-specific antigenic material revealed a composition typical of lipopolysaccharide. Immunoelectron microscopy using the species- or serotype b-specific monoclonal antibodies confirmed the biochemical and immunological characterization of the two antigens, showing that the species-specific epitopes were on the surface of the A. actinomycetemcomitans cell membrane and the serotype b-specific epitopes on the amorphous material extending from the cell surface. The data indicated that the serotype b antigen, detected by the antibody, was separable from lipopolysaccharide and was an A. actinomycetemcomitans capsular material. The species-specific antigen, being more conserved than the serotype antigen, was on all the lipopolysaccharide molecular species.
Collapse
Affiliation(s)
- W P McArthur
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, USA
| | | | | | | |
Collapse
|
48
|
Chen PB, Davern LB, Katz J, Eldridge JH, Michalek SM. Host responses induced by co-infection with Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans in a murine model. ORAL MICROBIOLOGY AND IMMUNOLOGY 1996; 11:274-81. [PMID: 9002881 DOI: 10.1111/j.1399-302x.1996.tb00181.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, evidence is presented that mixed infection with the periodontal pathogens Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans results in a synergistic effect in their pathogenicity and in their ability to induce humoral and cellular host responses. BALB/c mice were injected subcutaneously on the back with P. gingivalis ATCC 53977, A. actinomycetemocomitans 75 or a mixture of both bacteria. Samples of blood and fluid from abscesses formed at the site of injection (first degree) or distant from the injection site were collected for microbiologic analysis. Serum and spleens were obtained for evaluation of humoral and cellular responses to P. gingivalis and A actinomycetemocomitans. Mice injected with A. actinomycetemcomitans had first-degree lesions only, whereas mice injected with P. gingivalis and A. actinomycetemcomitans had lesions at first- and second-degree sites from which both bacterial species were isolated. A serum anti-P. gingivalis response was induced in P. gingivalis-injected mice, which was higher in mice injected with P. gingivalis and A. actinomycetemcomitans. This pattern was not seen in the anti-A, actinomycetemcomitans response. Lymphoproliferative responses to phytohemagglutinin, Escherichia coli lipopolysaccharide and P. gingivalis of spleen cells from infected mice were decreased, especially following co-infection. Furthermore, co-infection of mice resulted in the greatest decrease in the number of CD5+, especially CD4+ lymphocytes.
Collapse
Affiliation(s)
- P B Chen
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, USA
| | | | | | | | | |
Collapse
|
49
|
Hritz M, Fisher E, Demuth DR. Differential regulation of the leukotoxin operon in highly leukotoxic and minimally leukotoxic strains of Actinobacillus actinomycetemcomitans. Infect Immun 1996; 64:2724-9. [PMID: 8698501 PMCID: PMC174132 DOI: 10.1128/iai.64.7.2724-2729.1996] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The expression of the leukotoxin (ltx) operon varies significantly among Actinobacillus actinomycetemcomitans strains. The dual promoters driving ltx expression in the highly toxic strain JP2 have been previously characterized (J. M. Brogan, E. T. Lally, K. Poulsen, M. Kilian, and D. R. Demuth, Infect. Immun. 62:501-508, 1994), and genetic analyses of A. actinomycetemcomitans suggest that highly toxic strains like JP2 arose from minimally toxic strains, presumably by deletion of a 530-bp domain within the ltx promoter region (K. Poulsen, E. Theilade, E.T. Lally, D. R. Demuth, and M. Kilian, Microbiology 140:2049-2060, 1994). However, the ltx promoter of minimally toxic A. actinomycetemcomitans strains has not been well characterized. In this study, deletion and primer extension analyses showed that the ltx promoter of A. actinomycetemcomitans 652 is situated approximately 150 bp upstream of the ltxC gene and initiates transcription 138 nucleotides upstream of ltxC. In contrast to strain JP2, only a single promoter appears to drive ltx expression in 652. The 652 promoter resides within the 530-bp region that is absent from the JP2 promoter sequence, suggesting that the specific sequences controlling ltx expression differ in highly toxic and minimally toxic A. actinomycetemcomitans strains. In addition, ltx expression in strain 652 was shown to be induced three- to fourfold when cells were grown under anaerobic conditions. The induction of whole cell leukotoxicity, was accompanied by increases in the levels of Ltx polypeptide and the steady-state levels of ltx mRNA, suggesting that regulation occurred at the level of transcription. In contrast, the levels of leukotoxicity, Ltx polypeptide, and fix mRNA in strain JP2 were unaffected by anaerobic growth. These results suggest that the ltx operon is differentially regulated in highly toxic and minimally toxic A. actinomycetemcomitans strains and that the sequences controlling the oxygen-dependent regulation of ltx expression may reside within the 530-bp domain that is not present in highly toxic A. actinomycetemcomitans.
Collapse
Affiliation(s)
- M Hritz
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia 19104-6002, USA
| | | | | |
Collapse
|
50
|
Baehni PC, Guggenheim B. Potential of diagnostic microbiology for treatment and prognosis of dental caries and periodontal diseases. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1996; 7:259-77. [PMID: 8909881 DOI: 10.1177/10454411960070030401] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most evidence suggests that only a finite number of bacteria are responsible for dental caries and periodontal diseases. This knowledge led to the development of microbial tests which can identify suspected pathogens. Current evaluation of the diagnostic power of microbial tests has shown that they have a low sensitivity and a low prognostic value. Despite these shortcomings, there are valid indications for microbiological-based diagnosis. Salivary microbial tests for the detection of mutans streptococci and lactobacilli may be useful, for example, in young children, oligosialic patients, and orthodontic patients. These tests can be used to monitor the success of chemopreventive measures or compliance with dietary recommendations. Microbial diagnosis, may also be valuable in the treatment of early-onset periodontitis or in subjects who respond poorly to periodontal therapy. The use of microbial tests to monitor the efficacy of chemotherapy or mechanical treatment is of particular interest.
Collapse
Affiliation(s)
- P C Baehni
- Department of Preventive Dentistry, School of Dental Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | | |
Collapse
|