1
|
Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Oka S, Shimokawa H, Uchida T. Immunolocalization of enamel matrix protein-like proteins in the tooth enameloid of spotted gar, Lepisosteus oculatus, an actinopterygian bony fish. Connect Tissue Res 2019; 60:291-303. [PMID: 30063414 DOI: 10.1080/03008207.2018.1506446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Enameloid is a well-mineralized tissue covering the tooth surface in fish and it corresponds to the outer-most layer of dentin. It was reported that both dental epithelial cells and odontoblasts are involved in the formation of enameloid. Nevertheless, the localization and timing of secretion of ectodermal enamel matrix proteins in enameloid are unclear. In the present study, the enameloid matrix during the stages of enameloid formation in spotted gar, Lepisosteus oculatus, an actinopterygian, was examined mainly by transmission electron microscopy-based immunohistochemistry using an anti-mammalian amelogenin antibody and antiserum. Positive immunoreactivity with the antibody and antiserum was found in enameloid from the surface to the dentin-enameloid junction just before the formation of crystallites. This immunoreactivity disappeared rapidly before the full appearance of crystallites in the enameloid during the stage of mineralization. Immunolabelling was usually found along the collagen fibrils but was not seen on the electron-dense fibrous structures, which were probably derived from matrix vesicles in the previous stage. In inner dental epithelial cells, the granules in the distal cytoplasm often showed positive immunoreactivity, suggesting that the enamel matrix protein-like proteins originated from inner dental epithelial cells. Enamel matrix protein-like proteins in the enameloid matrix might be common to the enamel matrix protein-like proteins previously reported in the collar enamel of teeth and ganoine of ganoid scales, because they exhibited marked immunoreactivity with the same anti-mammalian amelogenin antibodies. It is likely that enamel matrix protein-like proteins are involved in the formation of crystallites along collagen fibrils in enameloid.
Collapse
Affiliation(s)
- Ichiro Sasagawa
- a Advanced Research Center, The Nippon Dental University , Niigata Japan
| | - Mikio Ishiyama
- b Department of Histology , The Nippon Dental University , Niigata Japan
| | - Hiroyuki Yokosuka
- b Department of Histology , The Nippon Dental University , Niigata Japan
| | - Masato Mikami
- c Department of Microbiology , The Nippon Dental University , Niigata , Japan
| | - Shunya Oka
- d Department of Biology , School of Life Dentistry at Niigata, The Nippon Dental University , Niigata Japan
| | - Hitoyata Shimokawa
- e Pediatric Dentistry, Department of Oral Health Sciences , Graduate School, Tokyo Medical and Dental University , Tokyo Japan
| | - Takashi Uchida
- f Department of Oral Biology , Graduate School of Biomedical Sciences, Hiroshima University , Hiroshima Japan
| |
Collapse
|
2
|
Germain D, Meunier FJ. Teeth of extant Polypteridae and Amiidae have plicidentine organization. ACTA ZOOL-STOCKHOLM 2017. [DOI: 10.1111/azo.12237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien Germain
- UMR 7207 (CR2P, MNHN-CNRS-UPMC); Département Origines et Évolution; Muséum national d'Histoire naturelle; Paris France
| | - François J. Meunier
- UMR 7208 (BOREA, CNRS-MNHN-IRD-UPMC); Département Adaptations du Vivant; Muséum national d'Histoire naturelle; Paris France
| |
Collapse
|
3
|
Teeth and ganoid scales in Polypterus and Lepisosteus, the basic actinopterygian fish: An approach to understand the origin of the tooth enamel. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Fine structural and immunohistochemical detection of collar enamel in the teeth of Polypterus senegalus, an actinopterygian fish. Cell Tissue Res 2012; 347:369-81. [DOI: 10.1007/s00441-011-1305-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 12/12/2011] [Indexed: 11/27/2022]
|
5
|
Andreev PS. Convergence in dental histology between the late Triassic semionotiform Sargodon tomicus (Neopterygii) and a late cretaceous (Turonian) pycnodontid (Neopterygii: Pycnodontiformes) species. Microsc Res Tech 2010; 74:464-79. [DOI: 10.1002/jemt.20932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 08/02/2010] [Indexed: 11/05/2022]
|
6
|
Kawasaki K, Buchanan AV, Weiss KM. Biomineralization in Humans: Making the Hard Choices in Life. Annu Rev Genet 2009; 43:119-42. [DOI: 10.1146/annurev-genet-102108-134242] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | - Anne V. Buchanan
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
| | - Kenneth M. Weiss
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802; ,
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802;
| |
Collapse
|
7
|
Sasagawa I, Ishiyama M, Yokosuka H, Mikami M, Uchida T. Tooth enamel and enameloid in actinopterygian fish. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11706-009-0030-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Kawasaki K. The SCPP gene repertoire in bony vertebrates and graded differences in mineralized tissues. Dev Genes Evol 2009; 219:147-57. [PMID: 19255778 DOI: 10.1007/s00427-009-0276-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 02/05/2009] [Indexed: 02/07/2023]
Abstract
The vertebrate tooth is covered with enamel in most sarcopterygians or enameloid in chondrichthyans and actinopterygians. The evolutionary relationship among these two tissues, the hardest tissue in the body, and other mineralized tissues has long been controversial. We have recently reported that specific combinations of secretory calcium-binding phosphoprotein (SCPP) genes are involved in the mineralization of bone, dentin, enameloid, and enamel. Thus, the early repertoire of SCPP genes would elucidate the evolutionary relationship across these tissues. However, the diversity of SCPP genes in teleosts and tetrapods and the roles of these genes in distinct tissues have remained unclear, mainly because many SCPP genes are lineage-specific. In this study, I show that the repertoire of SCPP genes in the zebrafish, frog, and humans includes many lineage-specific genes and some widely conserved genes that originated in stem osteichthyans or earlier. Expression analysis demonstrates that some frog and zebrafish SCPP genes are used primarily in bone, but also in dentin, while the reverse is true of other genes, similar to some mammalian SCPP genes. Dentin and enameloid initially use shared genes in the matrix, but enameloid is subsequently hypermineralized. Notably, enameloid and enamel use an orthologous SCPP gene in the hypermineralization process. Thus, the hypermineralization machinery ancestral to both enameloid and enamel arose before the actinopterygian-sarcopterygian divergence. However, enamel employs specialized SCPPs as structuring proteins, not used in enameloid, reflecting the divergence of enamel from enameloid. These results show graded differences in mineralized dental tissues and reinforce the hypothesis that bone-dentin-enameloid-enamel constitutes an evolutionary continuum.
Collapse
Affiliation(s)
- Kazuhiko Kawasaki
- Department of Anthropology, Pennsylvania State University, 409 Carpenter Building, University Park, PA 16802, USA.
| |
Collapse
|
9
|
Abstract
Many genes critical to vertebrate skeletal mineralization are members of the secretory calcium-binding phosphoprotein (SCPP) gene family, which has evolved by gene duplication from a single ancestral gene. In humans, mutations in some of these SCPP genes have been associated with various diseases related to dentin or enamel hypoplasia. Recently, systematic searches for SCPP genes of various species have allowed us to investigate the history of phylogenetically variable dental tissues as a whole. One important conclusion is that not all disease-associated SCPP genes are present in tetrapods, and teleost fish probably have none, even in toothed species, having acquired their complement of SCPP genes through an independent duplication history. Here, we review comparative analyses of mineralized dental tissues, with particular emphasis on the use of SCPPs, within and between tetrapods and teleosts. Current knowledge suggests a close relationship among bone, dentin, teleost fish enameloid (enamel-like hard tissue), and tetrapod enamel. These tissues thus form a mineralized-tissue continuum. Contemporary dental tissues have evolved from an ancestral continuum through lineage-specific modifications.
Collapse
Affiliation(s)
- K Kawasaki
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
10
|
THOMSON KS, McCUNE AR. Development of the scales in Lepisosteus as a model for scale formation in fossil fishes. Zool J Linn Soc 2008. [DOI: 10.1111/j.1096-3642.1984.tb00536.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Abstract
A systematic SEM survey of tooth microstructure in (primarily) fossil taxa spanning chondrichthyan phylogeny demonstrates the presence of a superficial cap of single crystallite enameloid (SCE) on the teeth of several basal elasmobranchs, as well as on the tooth plates of Helodus (a basal holocephalan). This suggests that the epithelial-mesenchymal interactions required for the development of enameloid during odontogenesis are plesiomorphic in chondrichthyans, and most likely in toothed gnathostomes, and provides phylogenetic support for the homology of chondrichthyan and actinopterygian enameloid. Along the neoselachian stem, we see a crownward progression, possibly modulated by heterochrony, from a monolayer of SCE lacking microstructural differentiation to the complex triple-layered tooth enameloid fabric of neoselachians. Finally, the occurrence of fully-differentiated neoselachian enameloid microstructure (including compression-resistant tangle fibered enameloid and bending-resistant parallel fibered enameloid) in Chlamydoselachus anguineus, a basal Squalean with teeth that are functionally "cladodont," is evidence that triple-layered enameloid microstructure was a preadaption to the cutting and gouging function of many neoselachian teeth, and thus may have played an integral role in the Mesozoic radiation of the neoselachian crown group.
Collapse
Affiliation(s)
- J Andrew Gillis
- Department of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, UK.
| | | |
Collapse
|
12
|
Sasagawa I, Ishiyama M. Fine structural and cytochemical observations on the dental epithelial cells during cap enameloid formation stages in Polypterus senegalus, a bony fish (Actinopterygii). Connect Tissue Res 2005; 46:33-52. [PMID: 16019412 DOI: 10.1080/03008200590935538] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tooth germs during cap enameloid formation stages in Polypterus senegalus were investigated by transmission electron microscopy and enzyme histo- and cytochemistry. Enameloid formation was divided into three stages: matrix formation, mineralization, and maturation. The enamel organ consisted of the inner dental epithelial cells, stellate reticulum, and outer dental epithelial cells during cap enameloid formation stages, but no stratum intermedium was found. During the matrix formation stage, the tall inner dental epithelial cells contained well-developed Golgi apparatus, abundant cisternae of rough endoplasmic reticulum and mitochondria. Spindle-shaped vesicles containing a filamentous structure were seen in the distal cytoplasm. During mineralization and maturation stages, many ACPase positive lysosomes were present in the cytoplasm, whereas the organelles were decreased in number. The infoldings of the distal plasma membrane of the inner dental epithelial cells were visible in the mineralization stage but were not marked in the maturation stage. The activity of nonspecific ALPase, Ca-ATPase, and K-NPPase was detected at the plasma membrane of the inner dental epithelial cells during the stages of mineralization and maturation. The results of fine structure and enzyme cytochemistry suggested that the dental epithelial cells were mainly involved in the degeneration and removal of enameloid matrix and in material transportation during the enameloid mineralization and maturation stages, rather than in the enameloid matrix formation. The results also showed that the structure of the dental epithelial cells in Polypterus was different from that in teleosts and gars, but that the function of the dental epithelial cells was similar to that in teleosts possessing well-mineralized cap enameloid.
Collapse
Affiliation(s)
- Ichiro Sasagawa
- Department of Anatomy, School of Dentistry at Niigata, Nippon Dental University, Niigata, Japan.
| | | |
Collapse
|
13
|
Sire JY, Davit-Beal T, Delgado S, Van Der Heyden C, Huysseune A. First-generation teeth in nonmammalian lineages: evidence for a conserved ancestral character? Microsc Res Tech 2002; 59:408-34. [PMID: 12430169 DOI: 10.1002/jemt.10220] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study focuses on the main characteristics of first-generation teeth (i.e., the first teeth of the dentition to develop in a given position and to become functional) in representatives of the major lineages of nonmammalian vertebrates (chondrichthyans, actinopterygians, and sarcopterygians: dipnoans, urodeles, squamates, and crocodiles). Comparative investigations on the LM and TEM level reveal the existence of two major types of first-generation teeth. One type (generalized Type 1) is characterized by its small size, conical shape, atubular dentine, and small pulp cavity without capillaries and blood vessels. This type is found in actinopterygians, dipnoans, and urodeles and coincides with the occurrence of short embryonic periods in these species. The other type assembles a variety of first-generation teeth, which have in common that they represent miniature versions of adult teeth. They are generally larger than the first type, have more complex shapes, tubular dentine, and a large pulp cavity containing blood vessels. These teeth are found in chondrichtyans, squamates, and crocodiles, taxa which all share an extended embryonic period. The presence in certain taxa of a particular type of first-generation teeth is neither linked to their phylogenetic relationships nor to adult body size or tooth structure, but relates to the duration of embryonic development. Given that the plesiomorphic state in vertebrates is a short embryonic development, we consider the generalized Type 1 first-generation tooth to represent an ancestral character for gnathostomes. We hypothesize that an extended embryonic development leads to the suppression of tooth generations in the development of dentition. These may still be present in the form of rudimentary germs in the embryonic period. In our view, this generalized Type 1 first-generation teeth has been conserved through evolution because it represents a very economic and efficient way of building small and simple teeth adapted to larval life. The highly adapted adult dentition characteristic for each lineage has been possible only through polyphyodonty.
Collapse
|
14
|
|
15
|
Ishiyama M, Inage T, Shimokawa H. Abortive secretion of an enamel matrix in the inner enamel epithelial cells during an enameloid formation in the gar-pike, Lepisosteus oculatus (Holostei, Actinopterygii). ARCHIVES OF HISTOLOGY AND CYTOLOGY 2001; 64:99-107. [PMID: 11310510 DOI: 10.1679/aohc.64.99] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The tooth in the gar-pike, Lepisosteus oculatus, an actinopterygian fish, is characterized by the occurrence of both enamel and enameloid, the former covering the tooth shaft and the latter, the tooth cap. Our previous research demonstrated that the enamel in this species was, as in the lungfish, immunoreactive for amelogenin, indicating its homologous nature with the mammalian tooth enamel, whereas the enameloid was completely immunonegative. The present study demonstrates that, during the early maturation stage of the enameloid formation, the inner enamel epithelial cells (IEECs) synthesize through a well-developed Golgi apparatus a fine-granular substance which is intensely immunoreactive for amelogenin. This substance was accumulated in a large saccule extended in a suprabasal zone of the cell; we were unable to find any morphological sign indicating a connection of the substance with the enameloid matrix. The abortive secretion of the enamel matrix-like substance in the IEEC during an enameloid formation was considered to be an instance of rudimental enamel formation. In the gar-pike, the synthesis of amelogenin in the IEEC has been demonstrated to occur independently from that of the enameloid matrix. The present findings demonstrate a prominent difference between the tooth enamel and enameloid.
Collapse
Affiliation(s)
- M Ishiyama
- Department of Histology, The Nippon Dental University School of Dentistry at Niigata, Japan.
| | | | | |
Collapse
|
16
|
Wacker K, Bartsch P, Clemen G. The development of the tooth pattern and dentigerous bones in Polypterus senegalus (Cladistia, Actinopterygii). Ann Anat 2001; 183:37-52. [PMID: 11206982 DOI: 10.1016/s0940-9602(01)80011-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation sequence of the tooth-bearing bones and the tooth pattern in early ontogeny of Polypterus senegalus is investigated using transparent preparation, histological sections, and SEM. During the attachment step of the yolk-sac larva the first dermal bones and teeth are formed. Teeth appear simultaneously in the areas of the maxillary, dentary, dermopalatine, prearticular, and coronoid 1 along with the first separate anlagen of these bones. A monostichous arrangement of primary teeth is established on the maxillary, dentary, and dermopalatine. Polystichous tooth arrangements do not occur before the early pterolarval phase, and then only in connection with bones of the palate and inner dental arcades. Especially pronounced is the influence of tooth formation on the structure of the parasphenoid that becomes much thickened by accretion of denticulate platelets, but we found neither evidence for a distinct vomeral contribution to the parasphenoid, nor a composite origin of the ectopterygoid in ontogeny. First replacement teeth are found in association with the maxillary and dentary as early as the late apterolarval phase. Primary teeth are of a single general type, whereas from the pterolarval phase onward three tooth types can be distinguished that are restricted to certain tooth bearing bones. Relatively late in ontogeny, dermo-metapterygoid and entopterygoid become formed and colonised by teeth, whereas first branchial teeth and tooth plates appear earlier during the first phase of extrinsic larval feeding. Characteristics of development of the dentition are discussed in comparison with character states of other better known fossil and recent taxa among Actinopterygii and Sarcopterygii. Compared to the assumed basic pattern of actinopterygian fishes, Polypteriformes show a derived condition with respect to structure, arrangement, replacement, and differentiation of teeth, which arises in sequence during larval development. This also corresponds to observed changes of feeding behaviour and functional demands during larval life.
Collapse
Affiliation(s)
- K Wacker
- Institut für Spezielle Zoologie und Vergleichende Embryologie, Universität Münster, Germany
| | | | | |
Collapse
|
17
|
Fincham AG, Moradian-Oldak J, Simmer JP. The structural biology of the developing dental enamel matrix. J Struct Biol 1999; 126:270-99. [PMID: 10441532 DOI: 10.1006/jsbi.1999.4130] [Citation(s) in RCA: 415] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The biomineralization of the dental enamel matrix with a carbonated hydroxyapatite mineral generates one of the most remarkable examples of a vertebrate mineralized tissue. Recent advances in the molecular biology of ameloblast gene products have now revealed the primary structures of the principal proteins involved in this extracellular mineralizing system, amelogenins, tuftelins, ameloblastins, enamelins, and proteinases, but details of their secondary, tertiary, and quaternary structures, their interactions with other matrix and or cell surface proteins, and their functional role in dental enamel matrix mineralization are still largely unknown. This paper reviews our current knowledge of these molecules, the probable molecular structure of the enamel matrix, and the functional role of these extracellular matrix proteins. Recent studies on the major structural role played by the amelogenin proteins are discussed, and some new data on synthetic amelogenin matrices are reviewed.
Collapse
Affiliation(s)
- A G Fincham
- Center for Craniofacial Molecular Biology, School of Dentistry, Los Angeles, California 90089, USA
| | | | | |
Collapse
|
18
|
Farina M, Schemmel A, Weissmüller G, Cruz R, Kachar B, Bisch PM. Atomic force microscopy study of tooth surfaces. J Struct Biol 1999; 125:39-49. [PMID: 10196115 DOI: 10.1006/jsbi.1998.4069] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atomic force microscopy (AFM) was used to study tooth surfaces in order to compare the pattern of particle distribution in the outermost layer of the tooth surfaces. Human teeth and teeth from a rodent (Golden hamster), from a fish (piranha), and from a grazing mollusk (chiton) with distinct feeding habits were analyzed in terms of particle arrangement, packing, and size distribution. Scanning electron microscopy and transmission electron microscopy were used for comparison. It was found that AFM gives high-contrast, high-resolution images and is an important tool as a source of complementary and/or new structural information. All teeth were cleaned and some were etched with acidic solutions before analysis. It was observed that human enamel (permanent teeth) presents particles tightly packed in the outer surface, whereas enamel from the hamster (continuously growing teeth) shows particles of less dense packing. The piranha teeth have a thin cuticle covering the long apatite crystals of the underlying enameloid. This cuticle has a rough surface of particles that have a globular appearance after the brief acidic treatment. The similar appearance of the in vivo naturally etched tooth surface suggests that the pattern of globule distribution may be due to the presence of an organic material. Elemental analysis of this cuticle indicated that calcium, phosphorus, and iron are the main components of the structure while electron microdiffraction of pulverized cuticle particles showed a pattern consistent with hydroxyapatite. The chiton mineralized tooth cusp had a smooth surface in an unabraded region and a very rough structure with the magnetite crystals (already known to make part of the structure) protruding from the surface. It was concluded that the structures analyzed are optimized for efficiency in feeding mechanism and life span of the teeth.
Collapse
Affiliation(s)
- M Farina
- Departamento de Anatomia, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, R.J., 21941-590, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Clemen G, Bartsch P, Wacker K. Dentition and dentigerous bones in juveniles and adults of Polypterus senegalus (Cladistia, Actinopterygii). Ann Anat 1998; 180:211-21. [PMID: 9645297 DOI: 10.1016/s0940-9602(98)80076-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tooth types, their arrangement and the mode of tooth replacement were studied in juvenile and adult specimens of Polypterus senegalus by means of scanning electron microscopy of cleared and stained specimens as well as sections. All the dermal bones of the oropharynx are almost completely covered with teeth except for the angulare. The same is true for the branchial apparatus where only the hyoid skeleton is toothless. The teeth are uniformly monocuspid and conical, but can be classified according to shape and size into three types. These types and the mode of tooth replacement are characteristic for each dermal bone. In some of the jaw bones each tooth possesses a lingually situated replacement tooth. This is true for the teeth of the premaxillary, the maxillary, and the dentary which are arranged in a single line, and those of the dermopalatine, the coronoids, and the vomer which are in several lines and graded in size. Replacement teeth of all the other dentigerous elements develop on top of existing pulpal openings, forming an anastomosing common pulpal complex only after resorption of the previous tooth. The tooth plates of the dermal bones of the branchial apparatus are connected by syndesmosis only to the perichondrally ossified and to the cartilaginous or connective tissue material of the elements of the gill-arches. The dentition and its association with the bones of the head in Polypterus senegalus bear resemblances to advanced actinopterygians on the one hand (e.g. differentiation of tooth-types, arrangement), but also some similarities to living Amphibia (anchoring material and mode of replacement) on the other. The accentuation of a single marginal line of large teeth in both, the outer and the inner dental arcade of the jaws is a peculiarity of Polypterus that in a way parallels the derived state of similar monolinear tooth arrangements in Actinopterygii and Tetrapoda.
Collapse
Affiliation(s)
- G Clemen
- Institut für Spezielle Zoologie und Vergleichende Embryologie, Universität Münster
| | | | | |
Collapse
|
20
|
Sasagawa I. Fine structure of tooth germs during the formation of enameloid matrix in Tilapia nilotica, a teleost fish. Arch Oral Biol 1995; 40:801-14. [PMID: 8651884 DOI: 10.1016/0003-9969(95)00050-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Tooth germs were examined by light and transmission electron microscopy. Collagen fibrils were relatively dispersed and thin at the early and middle stages of formation of the enameloid matrix, when the enameloid layer was thin. At the late stage, the fibrils became thicker, reaching nearly 30 nm dia, and formed the interwoven thick bundles that are characteristic of teleost cap enameloid. Abundant flocculent and/or fine, network-like material, probably representing glycosaminoglycans or proteoglycans, was located between the collagen fibrils. Tall, columnar, inner dental epithelial cells contained abundant rough endoplasmic reticulum and many mitochondria, and a well-developed Golgi apparatus was seen around the nuclei at the late stage. Elongated vesicles enclosing fine, filamentous material that resembled procollagen granules, and large granules containing fibril-like structures that were 150 nm in thickness and had periodic cross-banding at 32-nm intervals, were usually observed near the Golgi apparatus. The contents of the large granules were well stained with phosphotungstic acid, which suggests that inner dental epithelial cells synthesize collagen fibrils. At this time, odontoblasts also contained abundant rough endoplasmic reticulum and mitochondria, a well-developed Golgi, several kinds of granule including those that probably contained procollagen, and many microtubules. It is proposed that odontoblasts are involved in the formation of a considerable portion of the enameloid matrix, including collagen fibrils.
Collapse
Affiliation(s)
- I Sasagawa
- Department of Anatomy, School of Dentistry at Niigata, Nippon Dental University, Japan
| |
Collapse
|
21
|
|
22
|
True enamel matrix of the newt, Triturus pyrrhogaster, contains no sulfated glycoconjugates. Cell Tissue Res 1992. [DOI: 10.1007/bf00328010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Smith MM, Hall BK. Development and evolutionary origins of vertebrate skeletogenic and odontogenic tissues. Biol Rev Camb Philos Soc 1990; 65:277-373. [PMID: 2205303 DOI: 10.1111/j.1469-185x.1990.tb01427.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review deals with the following seven aspects of vertebrate skeletogenic and odontogenic tissues. 1. The evolutionary sequence in which the tissues appeared amongst the lower craniate taxa. 2. The topographic association between skeletal (cartilage, bone) and dental (dentine, cement, enamel) tissues in the oldest vertebrates of each major taxon. 3. The separate developmental origin of the exo- and endoskeletons. 4. The neural-crest origin of cranial skeletogenic and odontogenic tissues in extant vertebrates. 5. The neural-crest origin of trunk dermal skeletogenic and odontogenic tissues in extant vertebrates. 6. The developmental processes that control differentiation of skeletogenic and odontogenic tissues in extant vertebrates. 7. Maintenance of developmental interactions regulating skeletogenic/odontogenic differentiation across vertebrate taxa. We derive twelve postulates, eight relating to the earliest vertebrate skeletogenic and odontogenic tissues and four relating to the development of these tissues in extant vertebrates and extrapolate the developmental data back to the evolutionary origin of vertebrate skeletogenic and odontogenic tissues. The conclusions that we draw from this analysis are as follows. 8. The dermal exoskeleton of thelodonts, heterostracans and osteostracans consisted of dentine, attachment tissue (cement or bone), and bone. 9. Cartilage (unmineralized) can be inferred to have been present in heterostracans and osteostracans, and globular mineralized cartilage was present in Eriptychius, an early Middle Ordovician vertebrate unassigned to any established group, but assumed to be a stem agnathan. 10. Enamel and possibly also enameloid was present in some early agnathans of uncertain affinities. The majority of dentine tubercles were bare. 11. The contemporaneous appearance of cellular and acellular bone in heterostracans and osteostracans during the Ordovician provides no clue as to whether one is more primitive than the other. 12. We interpret aspidin as being developmentally related to the odontogenic attachment tissues, either closer to dentine or a form of cement, rather than as derived from bone. 13. Dentine is present in the stratigraphically oldest (Cambrian) assumed vertebrate fossils, at present some only included as Problematica, and is cladistically primitive, relative to bone. 14. The first vertebrate exoskeletal skeletogenic ability was expressed as denticles of dentine. 15. Dentine, the bone of attachment associated with dentine, the basal bone to which dermal denticles are fused and cartilage of the Ordovician agnathan dermal exoskeleton were all derived from the neural crest and not from mesoderm. Therefore the earliest vertebrate skeletogenic/odontogenic tissues were of neural-crest origin.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M M Smith
- Unit of Anatomy in Relation to Dentistry, United Medical School, Guy's Hospital, London Bridge, U.K
| | | |
Collapse
|
24
|
Kogaya Y. Histochemical properties of sulfated glycoconjugates in developing enameloid matrix of the fish Polypterus senegalus. HISTOCHEMISTRY 1989; 91:185-90. [PMID: 2470701 DOI: 10.1007/bf00490130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
I investigated the ultrastructural localization and histochemical properties of sulfated glycoconjugates in developing enameloid matrix of the fish Polypterus senegalus, by use of the high iron diamine thiocarbohydrazide silver proteinate (HID-TCH-SP) staining and enzymatic digestion methods. HID-TCH-SP stain deposits were localized in the dental basal lamina and in the whole thickness of developing enameloid matrix, particularly closely associated with enameloid collagen fibrils. Most HID-TCH-SP stain deposits in the enameloid were susceptible to testicular hyaluronidase but some stain deposits survived. HID-TCH-SP stain deposits in the basal lamina resisted the enzymatic digestion, and were regularly localized to the internal and external sites of lamina densa at an early stage of development, subsequently tending to be randomly arranged with the increase in thickness of enameloid matrix layer. Furthermore, enzymatic digestion with heparitinase preferentially removed HID-TCH-SP stain deposits in the region of the basal lamina. Thus, it was confirmed that most HID-TCH-SP stain deposits in developing enameloid matrix are chondroitin 4-sulfate and/or 6-sulfate and that the stain deposits in the basal lamina represent heparan sulfate. The chondroitin sulfates tended to disappear with the advancement of enameloid mineralization.
Collapse
Affiliation(s)
- Y Kogaya
- Department of Oral Anatomy, Asahi University, School of Dentistry, Gifu, Japan
| |
Collapse
|
25
|
Sire JY, Géraudie J, Meunier FJ, Zylberberg L. On the origin of ganoine: histological and ultrastructural data on the experimental regeneration of the scales of Calamoichthys calabaricus (Osteichthyes, Brachyopterygii, Polypteridae). THE AMERICAN JOURNAL OF ANATOMY 1987; 180:391-402. [PMID: 3425566 DOI: 10.1002/aja.1001800409] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In order to understand the process of ganoine formation on the ganoid scales, scale regeneration has been studied to overcome the lack of a growth series of scale ontogeny. Seven stages of ganoid scale regeneration have been defined over a period of five months in the polypterid fish Calamoichthys calabaricus. The study has been carried out using transmission electron microscopic techniques. After wound healing and differentiation of the osseous basal plate, a layer of vascular dentin is deposited at the upper surface of the basal plate owing to the presence there of odontoblasts closely applied to the dentin. When these cells move away, a close contact is then established between the stratified epidermis and the regenerating scale. Numerous alterations of the epidermal-dermal boundary occur until its disappearance and a thick layer of pre-ganoine is formed. This layer is progressively mineralized; and finally an organic intermediate layer differentiates between the ganoine, which is a hyper-mineralized tissue, and the overlying epidermis. This ultrastructural study demonstrates rather unequivocally the involvement of the inner epidermal layer (IEL) in the appearance and growth of the ganoine. It is suggested that these epidermal cells can be compared functionally to the inner dental epithelium (IDE) described during mammal tooth morphogenesis. Consequently, our results allow us to propose that ganoine can be identified as true enamel, although additional data are necessary to analyze the proteinaceous component or its organic matrix.
Collapse
Affiliation(s)
- J Y Sire
- Equipe Formations Squelettiques, UA 041137 CNRS, Laboratoire d'Anatomie Comparée, Université Paris 7, France
| | | | | | | |
Collapse
|
26
|
Kogaya Y, Furuhashi K. Calcium distribution in true odontoblasts of the fish Hoplognathus fasciatus at dentine mineralization stage. Arch Oral Biol 1987; 32:665-9. [PMID: 3481969 DOI: 10.1016/0003-9969(87)90042-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ultrastructural localization of calcium was investigated using the potassium pyroantimonate technique. The calcium distribution pattern in true odontoblasts differed from that of odontoblasts of mammals and was similar to that of mammalian osteoblasts.
Collapse
Affiliation(s)
- Y Kogaya
- Department of Oral Anatomy, Asahi University, School of Dentistry, Gifu, Japan
| | | |
Collapse
|
27
|
|