1
|
Jalali R, Guy F, Ghazanfari S, Lyaruu D, van Ruijven L, DenBesten P, Martignon S, Castiblanco G, Bronckers ALJJ. Mineralization-defects are comparable in fluorotic impacted human teeth and fluorotic mouse incisors. Arch Oral Biol 2017; 83:214-221. [PMID: 28806687 DOI: 10.1016/j.archoralbio.2017.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/14/2017] [Accepted: 07/25/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Fluoride excess of 0.05-0.07mgF/kgbw/day in water or food additives like salt is the principal cause of endemic dental fluorosis. How fluoride causes these defects is not clear yet. Recent studies in rodents suggest that development of enamel fluorosis is associated with insufficient neutralization of protons released during the formation of hypermineralized lines. DESIGN Here we examined whether hypermineralization could also be assessed by MicroCT in developing molar enamel of humans exposed to fluoride. RESULT Micro-CT analysis of hypomineralized enamel from human fluorotic molars graded by the Thylstrup-Fejerskov (TF) Index as III-IV showed weak hypermineralized lines and hypermineralized patches not seen in TF-I/II grade enamel. The mesio-distal sides of these molar teeth were significantly smaller (∼18%, p=0.02) than in TF-I/II teeth. CONCLUSION The patterns of changes observed in human fluorotic teeth were similar to those in fluorotic rodent incisors. The data are consistent with the hypothesis that also in developing human teeth fluoride-stimulated local acidification of enamel could be a mechanism for developing fluorotic enamel.
Collapse
Affiliation(s)
- Rozita Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands.
| | - Franck Guy
- CNRS INEE UMR 7262 - IPHEP, Institut de Paléoprimatologie et Paléontologie Humaine, Evolution et Paléoenvironnements, Université de Poitiers - Faculté des Sciences, Poitiers, Cedex 9, France
| | - Samaneh Ghazanfari
- Department of Orthopaedic Surgery - VU Medical Centre, MOVE Research Institute Amsterdam, Amsterdam, Netherlands and the Aachen-Maastricht Institute for Biobased Materials, Faculty of Humanities and Sciences, Maastricht University, Maastricht, Netherlands
| | - Don Lyaruu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - Leo van Ruijven
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| | - Pamela DenBesten
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, 94143-0422, USA
| | - Stefania Martignon
- UNICA - Caries Research Unit, Research Vice-rectory, Universidad El Bosque, Bogotá, Colombia
| | - Gina Castiblanco
- UNICA - Caries Research Unit, Research Vice-rectory, Universidad El Bosque, Bogotá, Colombia
| | - Antonius L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam, and MOVE Research Institute, VU University Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Bronckers ALJJ, Lyaruu DM, Jalali R, DenBesten PK. Buffering of protons released by mineral formation during amelogenesis in mice. Eur J Oral Sci 2016; 124:415-425. [PMID: 27422589 DOI: 10.1111/eos.12287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2016] [Indexed: 12/17/2022]
Abstract
Regulation of pH by ameloblasts during amelogenesis is critical for enamel mineralization. We examined the effects of reduced bicarbonate secretion and the presence or absence of amelogenins on ameloblast modulation and enamel mineralization. To that end, the composition of fluorotic and non-fluorotic enamel of several different mouse mutants, including enamel of cystic fibrosis transmembrane conductance regulator-deficient (Cftr null), anion exchanger-2-deficient (Ae2a,b null), and amelogenin-deficient (Amelx null) mice, was determined by quantitative X-ray microanalysis. Correlation analysis was carried out to compare the effects of changes in the levels of sulfated-matrix (S) and chlorine (Cl; for bicarbonate secretion) on mineralization and modulation. The chloride (Cl- ) levels in forming enamel determined the ability of ameloblasts to modulate, remove matrix, and mineralize enamel. In general, the lower the Cl- content, the stronger the negative effects. In Amelx-null mice, modulation was essentially normal and the calcium content was reduced least. Retention of amelogenins in enamel of kallikrein-4-deficient (Klk4-null) mice resulted in decreased mineralization and reduced the length of the first acid modulation band without changing the total length of all acidic bands. These data suggest that buffering by bicarbonates is critical for modulation, matrix removal and enamel mineralization. Amelogenins also act as a buffer but are not critical for modulation.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, the Netherlands. .,VU University Amsterdam, MOVE Research Institute, Amsterdam, the Netherlands.
| | - Don M Lyaruu
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, the Netherlands
| | - Rozita Jalali
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam, Amsterdam, the Netherlands
| | - Pamela K DenBesten
- Department of Oral Sciences, University of California in San Francisco, CA, USA
| |
Collapse
|
3
|
Yamada A, Iwamoto T, Fukumoto E, Arakaki M, Miyamoto R, Sugawara Y, Komatsu H, Nakamura T, Fukumoto S. Epithelial-mesenchymal interaction reduces inhibitory effects of fluoride on proliferation and enamel matrix expression in dental epithelial cells. PEDIATRIC DENTAL JOURNAL 2012. [DOI: 10.1016/s0917-2394(12)70253-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Bronckers ALJJ, Lyaruu DM, DenBesten PK. The impact of fluoride on ameloblasts and the mechanisms of enamel fluorosis. J Dent Res 2009; 88:877-93. [PMID: 19783795 DOI: 10.1177/0022034509343280] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intake of excess amounts of fluoride during tooth development cause enamel fluorosis, a developmental disturbance that makes enamel more porous. In mild fluorosis, there are white opaque striations across the enamel surface, whereas in more severe cases, the porous regions increase in size, with enamel pitting, and secondary discoloration of the enamel surface. The effects of fluoride on enamel formation suggest that fluoride affects the enamel-forming cells, the ameloblasts. Studies investigating the effects of fluoride on ameloblasts and the mechanisms of fluorosis are based on in vitro cultures as well as animal models. The use of these model systems requires a biologically relevant fluoride dose, and must be carefully interpreted in relation to human tooth formation. Based on these studies, we propose that fluoride can directly affect the ameloblasts, particularly at high fluoride levels, while at lower fluoride levels, the ameloblasts may respond to local effects of fluoride on the mineralizing matrix. A new working model is presented, focused on the assumption that fluoride increases the rate of mineral formation, resulting in a greater release of protons into the forming enamel matrix.
Collapse
Affiliation(s)
- A L J J Bronckers
- Department of Oral Cell Biology, ACTA, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | |
Collapse
|
5
|
Mesgouez C, Oboeuf M, Mauro N, Colon P, MacDougall M, Machtou P, Sautier JM, Berdal A. Ultrastructural and immunocytochemical characterization of immortalized odontoblast MO6-G3. Int Endod J 2006; 39:453-63. [PMID: 16674740 DOI: 10.1111/j.1365-2591.2006.01089.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To investigate an immortalized murine odontoblast cell line as a potential alternative for experimental studies on dentinogenesis. METHODOLOGY The MO6-G3 cell line was investigated morphologically over 3, 7, 11 and 42 days of culture, using histochemical localization of dentine sialoprotein (DSP), alkaline phosphatase (AP), type I collagen and actin filaments, histoenzymatic staining and biochemical investigation of AP and finally, transmission and scanning electron microscopy. RESULTS Scanning electron micrographs showed elongated cells. Accordingly, a polarized organization of odontoblasts was observed by transmission electron microscopy, identifying distinct subcellular compartments as described in vivo. The secretion apparatus, which includes cisternae of rough endoplasmic reticulum, Golgi apparatus saccules and secretion vesicles and granules, was longitudinally organized in the supranuclear compartment ending distally in the secretory pole. A cellular process was observed. The investigation of the cytoskeleton network revealed that actin microfilaments were organized in parallel stress fibre oriented depending on the longitudinal axis of the cytoplasm. Immunofluorescent labelling showed a continuous expression of type I collagen, DSP and AP. A unipolar distribution characterized intracellular DSP immunoreactivity. Histoenzymology revealed AP active sites increasing from 3 to 11 days albeit with a moderate level of activity comparatively to the in vivo situation in dental cells. CONCLUSION This cell line MO6-G3 not only showed the criteria of odontoblast phenotype as previously reported but also the characteristic morphodifferentiation pattern of polarized odontoblasts at the cellular level but with an apparent random distribution.
Collapse
Affiliation(s)
- C Mesgouez
- Département d'Odontologie Conservatrice-Endodontie, UFR d'Odontologie, Université Paris 7-Denis Diderot, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Robinson C, Connell S, Kirkham J, Brookes SJ, Shore RC, Smith AM. The effect of fluoride on the developing tooth. Caries Res 2004; 38:268-76. [PMID: 15153700 DOI: 10.1159/000077766] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This review aims to outline the effects of fluoride on the biological processes involved in the formation of tooth tissues, particularly dental enamel. Attention has been focused on mechanisms which, if compromised, could give rise to dental fluorosis. The literature is extensive and often confusing but a much clearer picture is emerging based on recent more detailed knowledge of odontogenesis. Opacity, characteristic of fluorotic enamel, results from incomplete apatite crystal growth. How this occurs is suggested by other changes brought about by fluoride. Matrix proteins, associated with the mineral phase, normally degraded and removed to permit final crystal growth, are to some extent retained in fluorotic tissue. Fluoride and magnesium concentrations increase while carbonate is reduced. Crystal surface morphology at the nano-scale is altered and functional ameloblast morphology at the maturation stage also changes. Fluoride incorporation into enamel apatite produces more stable crystals. Local supersaturation levels with regard to the fluoridated mineral will also be elevated facilitating crystal growth. Such changes in crystal chemistry and morphology, involving stronger ionic and hydrogen bonds, also lead to greater binding of modulating matrix proteins and proteolytic enzymes. This results in reduced degradation and enhanced retention of protein components in mature tissue. This is most likely responsible for porous fluorotic tissue, since matrix protein removal is necessary for unimpaired crystal growth. To resolve the outstanding problems of the role of cell changes and the precise reasons for protein retention more detailed studies will be required of alterations to cell function, effect on specific protein species and the nano-chemistry of the apatite crystal surfaces.
Collapse
Affiliation(s)
- C Robinson
- Leeds Dental Institute, University of Leeds, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
7
|
Bronckers ALJJ, Lyaruu DM, Bervoets TJM, Wöltgens JHM. Fluoride enhances intracellular degradation of amelogenins during secretory phase of amelogenesis of hamster teeth in organ culture. Connect Tissue Res 2003; 43:456-65. [PMID: 12489198 DOI: 10.1080/03008200290001113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amelogenins are the major protein species synthesized by secretory ameloblasts and are believed to be involved in enamel mineralization. During enamel formation, amelogenins are progressively degraded into smaller fragments by protease activity. These amelogenin fragments are removed from the enamel extracellular space, thereby enabling full mineralization of the dental enamel. Enamel from fluorotic teeth is porous and contains more proteins and less mineral than sound enamel. In this study we examined the hypothesis that fluoride (F-) is capable of inhibiting the proteolysis of amelogenins in enamel being formed in organ culture. Hamster molar tooth germs in stages of secretory amelogenesis were pulse labeled in vitro with [3H]- or [14C] proline and subsequently pulse chased. The explants were exposed to F- at different days of chase (i.e., during secretory amelogenesis early after labeling, later after labeling or at stages just beyond secretory amelogenesis). Exposure of secretory stage explants to F- enhanced the release of radiolabeled fragments when F- was applied early after labeling but progressively less if applied later. In contrast, F- had no such effect in stages beyond secretion. The enhanced release of radiolabeled fragments in secretory stages was associated with a reduction of radioactivity in the soft tissue enamel organ indicating that fragmentation of enamel matrix proteins (mainly amelogenins) occurred intracellularly. Analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that the fluorotic enamel contained less radiolabeled parent amelogenins (M(r) 28 kD and 26 kD) but more low-molecular-mass fragments than enamel from control explants. Our data indicate that F- promotes intracellular degradation of the newly synthesized parent amelogenins during secretory stage. Our in vitro data do not support the concept that F- impairs extracellular proteolysis of amelogenins, either in the secretory phase or in the stage just beyond the secretory phase.
Collapse
Affiliation(s)
- A L J J Bronckers
- Department of Oral Cell Biology, Academic Center for Dentistry in Amsterdam (ACTA), Vrije Universiteit, van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Moseley R, Sloan AJ, Waddington RJ, Smith AJ, Hall RC, Embery G. The influence of fluoride on the cellular morphology and synthetic activity of the rat dentine-pulp complex in vitro. Arch Oral Biol 2003; 48:39-46. [PMID: 12615140 DOI: 10.1016/s0003-9969(02)00160-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exposure to high fluoride concentrations in the immediate environment of the tissue is recognized to result in the post-translational modification of non-collagenous dentine extracellular matrix (ECM) components, potentially altering dentine mineralization. However, less is known about the effects of fluoride exposure on the morphology or metabolism of the cells associated with the dentine-pulp complex. This study examined the effects of fluoride exposure at defined concentrations on the cellular morphology and ECM synthetic activities of odontoblasts and pulpal fibroblasts by the culture of tooth sections from male Wistar rat incisors in Trowel-type cultures for up to 14 days, in the presence and absence of 6mM sodium fluoride. Histomorphometric analysis of the dentine-pulp complex of sodium fluoride-exposed tooth sections demonstrated no obvious gross morphological differences with respect to the odontoblasts and pulpal fibroblasts throughout the 14-day culture period, in comparison with unexposed tooth sections. No significant differences in odontoblast and pulpal fibroblast cell numbers were determined in the absence and presence of fluoride. Image analysis examination of odontoblast cytoplasmic:nuclear (C/N) ratios also showed no significant differences in fluoride-exposed and unexposed tooth sections, although reductions in the C/N ratios of pulpal fibroblasts were evident in fluoride-exposed sections at days 10 and 14. No significant differences in predentine width were observed in fluoride-exposed and unexposed tooth sections over the 14-day culture period. Autoradiography following [3H]proline incorporation into the dentine-pulp complex demonstrated inhibition of collagen synthesis, particularly by the odontoblasts in tooth sections exposed to 6mM sodium fluoride. These findings, in association with those from previous studies, imply that dentine ECM alterations may contribute to the altered mineralization of dentine during fluorosis, rather than secretory-related changes in odontoblast morphology.
Collapse
Affiliation(s)
- R Moseley
- Department of Dental Health and Biological Sciences, Dental School, University of Wales College of Medicine, Heath Park, CF14 4XY, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
9
|
Kirkham J, Brookes SJ, Shore RC, Bonass WA, Smith DA, Wallwork ML, Robinson C. Atomic force microscopy studies of crystal surface topology during enamel development. Connect Tissue Res 2001; 38:91-100; discussion 139-45. [PMID: 11063018 DOI: 10.3109/03008209809017025] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
During the secretory stage of enamel development, the hydroxyapatite crystals appear as thin ribbons which grow substantially in width and thickness during the later maturation stage. In this study, the atomic force microscope (AFM) was used to investigate developmentally-related changes in deproteinized enamel crystal surface topography in normal animals and in those receiving daily doses of fluoride. The AFM revealed previously undescribed surfaces features, some of which may represent growth sites or different crystalline phases. Secretory stage crystals had greater surface rugosity and were more irregular, with spherical sub-structures of 20-30 nm diameter arranged along the "c"-axis. Maturation stage crystals were smoother and larger but revealed both subnanometer steps and lateral grooves running parallel to the "c"-axis. Crystals from fluorotic tissue showed similar features but were more irregular with a higher degree of surface roughness, suggesting abnormal growth. The AFM may prove an important adjunct in determination of the mechanisms controlling crystal size and morphology in skeletal tissues.
Collapse
Affiliation(s)
- J Kirkham
- Division of Oral Biology, Leeds Dental Institute, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Fluoride appears to specifically interact with mineralizing tissues, causing an alteration of the mineralization process. In enamel, fluorosis results in a subsurface hypomineralization. This hypomineralized enamel appears to be directly related to a delay in the removal of amelogenins at the early-maturation stage of enamel formation. The specific cause for this delay is not known, although existing evidence points to reduced proteolytic activity of proteinases that hydrolyze amelogenin. This delay in hydrolysis of amelogenins could be due to a direct effect of fluoride on proteinase secretion or proteolytic activity, or to a reduced effectiveness of the proteinase due to other changes in the protein or mineral of the fluorosed enamel matrix. The formation of dental fluorosis is highly dependent on the dose, duration, and timing of fluoride exposure. The early-maturation stage of enamel formation appears to be particularly sensitive to the effects of fluoride on enamel formation. Although the risk of enamel fluorosis is minimal with exposure only during the secretory stage, this risk is greatest when exposure occurs in both secretory and maturation stages of enamel formation. The risk of fluorosis appears to be best related to the total cumulative fluoride exposure to the developing dentition.
Collapse
Affiliation(s)
- P K Den Besten
- Department of Pediatric Dentistry, University of California San Francisco 94143-0512, USA.
| |
Collapse
|
11
|
DenBesten PK. Biological mechanisms of dental fluorosis relevant to the use of fluoride supplements. Community Dent Oral Epidemiol 1999; 27:41-7. [PMID: 10086925 DOI: 10.1111/j.1600-0528.1999.tb01990.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorosis occurs when fluoride interacts with mineralizing tissues, causing alterations in the mineralization process. In dental enamel, fluorosis causes subsurface hypomineralizations or porosity, which extend toward the dentinal-enamel junction as severity increases. This subsurface porosity is most likely caused by a delay in the hydrolysis and removal of enamel proteins, particularly amelogenins, as the enamel matures. This delay could be due to the direct effect of fluoride on the ameloblasts or to an interaction of fluoride with the proteins or proteinases in the mineralizing matrix. The specific mechanisms by which fluoride causes the changes leading to enamel fluorosis are not well defined; though the early-maturation stage of enamel formation appears to be particularly sensitive to fluoride exposure. The development of fluorosis is highly dependent on the dose, duration, and timing of fluoride exposure. The risk of enamel fluorosis is lowest when exposure takes place only during the secretory stage, but highest when exposure occurs in both secretory and maturation stages. The incidence of dental fluorosis is best correlated with the total cumulative fluoride exposure to the developing dentition. Fluoride supplements can contribute to the total fluoride exposure of children, and if the total fluoride exposure to the developing teeth is excessive, fluorosis will result.
Collapse
Affiliation(s)
- P K DenBesten
- Department of Growth and Development, University of California at San Francisco, 94019, USA.
| |
Collapse
|
12
|
Bronckers AL, Bervoets TJ, Lyaruu DM, Wöltgens JH. Degradation of hamster amelogenins during secretory stage enamel formation in organ culture. Matrix Biol 1995; 14:533-41. [PMID: 8535603 DOI: 10.1016/s0945-053x(05)80002-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Increasing amelogenin heterogeneity during pre-eruptive enamel formation has been explained by proteolytic cleavage of a parent amelogenin, differences in posttranslational modifications, translation of multiple alternative spliced mRNA transcripts or combinations of these possibilities. We investigated the possibility of proteolytic degradation of amelogenins during secretory amelogenesis by pulse-labelling amelogenins with [3H]proline followed by a pulse chase, all under organ culture conditions. The results indicate that during pulse chase, hamster molar tooth explants rapidly released substantial amounts of the radioactivity into the culture medium, as non-trichloroacetic-acid precipitable, noncollagenous 3H-activity at the expense of radioactivity associated with the proteins in the enamel space. Simultaneously, there was a continuous mineralization of the forming enamel in vitro as shown by an increase in total calcium content of the explants. Western blotting, microdissection studies and fluorography of radiolabelled matrix proteins after SDS-PAGE indicated that after an 8-h labelling, three radioactive amelogenin species could be extracted from forming enamel, one prominent species of molecular mass 26 kDa and two less prominent ones of 28 and 22 kDa. During pulse chase more amelogenin bands with lower molecular mass became apparent, a pattern similar to that observed in vivo. Examination of amelogenin blots with the glycan assay showed that none of the hamster amelogenins stained for carbohydrate. We conclude that changes in the amelogenin profiles during enamel development of cultured hamster explants are similar to those observed in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A L Bronckers
- Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, (ACTA), The Netherlands
| | | | | | | |
Collapse
|
13
|
Karim AC, Bervoets TJ, Lyaruu DM, Wöltgens JH, Bronckers AL. The effects of adriamycin on dental proteins formation and mineralization in vitro. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1993; 45:41-6. [PMID: 8467200 DOI: 10.1016/s0940-2993(11)80453-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Second maxillary molars of 4-5 days old golden hamsters were exposed for 2 h in vitro to 1 mg/L adriamycin, rinsed and subsequently cultured up to 7 days without the drug. At days 3, 5 or 7 of culture the synthesis of extracellular tooth matrices and their mineralization were examined by measuring the incorporation of 3H-proline and the uptake of 45Ca and 32PO4 by the explants during a 24 h pulse labeling. Compared with unexposed control explants, exposure to adriamycin for the first 2 h of culture had no effect on total biosynthesis of proline-containing matrix proteins. However, at days 3 and 5 of culture it increased the quantity of water-soluble enamel matrix proteins (amelogenins). Adriamycin also strongly reduced the amount of organically-bound 32P-activity in a fraction extractable with guanidine-HC1-EDTA only, allegedly containing a mixture of mineral-associated proteins from both enamel and dentin. Since this decrease of 32P-activity coincided with the formation of osteodentin in the pulp as shown previously in histological and electron microscopical studies, it was speculated that osteodentin matrix may not contain the highly phosphorylated, dentin-specific phosphoproteins (DPP). Adriamycin also affected the uptake of 45Ca and 32PO4. At day 3 these values were slightly higher than control values but lower at days 5 and 7. It therefore appears that a 2 h exposure to adriamycin in concentrations as low as 1 mg/L causes an acceleration of secretory amelogenesis by tooth germs in vitro. It also induces pulp cells to form osteodentin.
Collapse
Affiliation(s)
- A C Karim
- Department of Anatomy, University of Manitoba, Winnipeg, Canada
| | | | | | | | | |
Collapse
|
14
|
Aoba T, Moreno EC, Tanabe T, Fukae M. Effects of fluoride on matrix proteins and their properties in rat secretory enamel. J Dent Res 1990; 69:1248-55. [PMID: 2162362 DOI: 10.1177/00220345900690060501] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
This publication concerns the selective adsorption of rat enamel proteins onto hydroxyapatite, their solubility in aqueous solutions, and the effect that systemic fluoride has on these properties. The enamel proteins used as adsorbates were extracted in 0.5 mol/L acetic acid from the secretory enamel of the upper and lower incisors of SD rats (females, 200-220 g body weight). Equilibration of the proteins with hydroxyapatite was performed in two solutions: (i) 50 mmol/L acetate buffer at pH 6.0 and 0 degrees C, and (ii) 50 mmol/L Tris buffer containing 4 mol/L guanidine at pH 7.4 and room temperature. Enamel was dissected from animals, which were given either de-ionized water (control group) or water containing 25, 50, 75, or 100 ppm fluoride as NaF for four weeks. From these enamel samples, the proteins were extracted in sequence with 160 mmol/L NaCl and 3 mmol/L phosphate (pH 7.3), 50 mmol/L carbonate buffer (pH 10.8), and finally, with 0.5 mol/L acetic acid for dissolution of the enamel mineral. The F, Ca, and P contents of the various enamel samples were determined.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Aoba
- Forsyth Dental Center, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
15
|
Pendrys DG, Stamm JW. Relationship of total fluoride intake to beneficial effects and enamel fluorosis. J Dent Res 1990; 69 Spec No:529-38; discussion 556-7. [PMID: 2179311 DOI: 10.1177/00220345900690s107] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies indicate that the prevalence of very mild to moderate dental fluorosis, as classified by Dean, has increased relative to that found in earlier investigations. To date, fluoridated water, fluoride supplements, the diet, fluoride dentifrices, and other topical fluoride applications have been identified as sources of systemic fluoride. Recent evidence suggests that there is a strong association between mild to moderate enamel fluorosis and the use of fluoride supplements during early childhood, and that the presently recommended supplementation schedule for U.S. children above the age of 2 years may be too high. Evidence also suggests that there is a strong association between fluoride dentifrice use during early childhood and enamel fluorosis in fluoridated populations. These findings support the need for a careful review of existing supplementation schedules and early oral hygiene practices. There is a pressing need for additional analytical epidemiological studies to confirm existing findings and to determine whether other fluoride sources may be associated with enamel fluorosis. Further, since exposure to combinations of individual risk factors has been shown to carry more than merely an additive increase in the risk of fluorosis, these studies must be multifactorial in design. There is also a need for more fluorosis prevalence and severity data to be gathered, so that the development of enamel fluorosis as a public health problem can be assessed, and so that the success of measures implemented to maximize efficacy while minimizing unwanted side-effects can be monitored.
Collapse
Affiliation(s)
- D G Pendrys
- Department of Behavioral Sciences and Community Health, School of Dental Medicine, University of Connecticut Health Center, Farmington 06032
| | | |
Collapse
|
16
|
Robinson C, Kirkham J. The effect of fluoride on the developing mineralized tissues. J Dent Res 1990; 69 Spec No:685-91; discussion 721. [PMID: 2179330 DOI: 10.1177/00220345900690s134] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The work described considers the effects on calcified tissues of those concentrations of fluoride which are not overtly cyto-toxic, i.e., in the general region of up to 1-2 mumol/L. Plasma fluoride concentrations or those of the cellular environment are considered rather than dietary levels. The effect of fluoride ion on specific stages of tooth and bone development is discussed. Little effect has been observed on the modulation of gene expression as far as odontogenesis is concerned, although there is evidence that fluoride could be osteogenic in both embryonic and adult tissues. Expression of extracellular matrix protein genes seems not to be impaired, but subtle changes detected in the enamel matrix could be due to selective alterations in amino-acid uptake or interference with subsequent protein processing. This could also be due to an extension of the secretory period without concomitant changes in post-secretory matrix processing. Removal of matrix is apparently impaired, with concomitant incomplete maturation. While existing mineral phases can be affected, it is more likely that matrix and or mineral-matrix interaction is the site of action. Explant studies suggest that the effect may be reversible. Inhibition of proteolysis during enamel maturation may account for the reported inhibition of enamel crystal growth. This is supported by the finding that the normally incomplete maturation of porcine enamel is associated with a somewhat greater residual protein content. The use of animal models in the investigation of enamel dysplasia (fluoride-induced or otherwise) should therefore be viewed with caution.
Collapse
Affiliation(s)
- C Robinson
- Department of Oral Biology, University of Leeds Clarendon Way, United Kingdom
| | | |
Collapse
|
17
|
Sakakura Y, Fujiwara N, Nawa T. A simple, disposable, and improved organ culture system for maintaining three-dimensional development of mouse embryonic molars. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 1989; 25:959-64. [PMID: 2808226 DOI: 10.1007/bf02624010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Mandibular first molars from 17-d-old mouse embryos were cultured in vitro for 2 to 4 d by a simple, disposable, improved floatation method. This method consisted of using a 24-well multidish and a plastic culture chamber with a membrane filter. The improved floatation method, as well as our previous method, was capable of the three-dimensional development of tooth germs. Cytodifferentiation of odontoblasts and ameloblasts and formation of extracellular matrices were accelerated by the present culture system, in comparison with our previous method. All the molars cultivated by this method were very similar in morphology to in vivo. On Day 2 of culture the terminal cytodifferentiation of odontoblasts and the formation of predentin were ascertained in the bucco-lingual sections of the cultured molars. A thick layer of predentin was formed at the tip of the cusp and gradually decreased toward the cervical loop and the fissure between the buccal and lingual cusps. On Day 4 in vitro, secretory ameloblasts produced enamel matrix, and the mineralized enamel showed showed prismatic structure very similar to that in vivo. Dentin and predentin also were normal in ultrastructure. The extracellular matrices (enamel, dentine, and predentin) were formed in line with the pattern of the cusp and the formation of matrices normally started at the tip of the cusp. We conclude that the three-dimensional development of whole tooth germs in vitro may be very important for normal expression of the developmental program intrinsic to mouse embryonic molars.
Collapse
Affiliation(s)
- Y Sakakura
- Department of Oral Anatomy, School of Dentistry, Iwate Medical University, Japan
| | | | | |
Collapse
|
18
|
DenBesten PK, Heffernan LM. Enamel proteases in secretory and maturation enamel of rats ingesting 0 and 100 PPM fluoride in drinking water. Adv Dent Res 1989; 3:199-202. [PMID: 2701159 DOI: 10.1177/08959374890030022001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dental enamel formed during ingestion of high levels of fluoride in drinking water has an increased organic content in the maturation stage, which may be due to a delay in the breakdown of amelogenins during the early-maturation stage of enamel formation. This delay in the breakdown of amelogenins in fluorosed enamel suggests an effect of fluoride on enamel proteases which hydrolyze the early secreted enamel proteins. In this study, we compared the proteases present in fluorosed and control secretory-stage and maturation-stage enamel. Enamel was demineralized and separated in SDS gels containing 0.1% gelatin. After incubation in 100 mmol/L Tris-HCl, pH 8, with 10 mmol/L CaCl2, the gels were stained with Coomassie Blue, and proteases were seen as clear zones of degraded gelatin. Similar bands of proteolytic activity were seen in fluorosed and in control enamel. In the maturation stage, more proteases were present than in the secretory stage of enamel formation. Less digestion of gelatin substrate occurred in several proteases found in the fluorosed maturation-stage enamel as compared with the control maturation-stage enamel. This suggests that the amount of protease secreted or the activity of the proteases may be altered in fluorosed maturation-stage enamel.
Collapse
|
19
|
Bronckers AL, Bervoets TJ, Lyaruu DM, Wöltgens JH. Antagonism of fluoride toxicity by high levels of calcium but not of inorganic phosphate during secretory amelogenesis in the hamster tooth germ in vitro. Arch Oral Biol 1989; 34:625-36. [PMID: 2597052 DOI: 10.1016/0003-9969(89)90017-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Whether the interference by fluoride (F-) with secretory amelogenesis in vitro could be modulated by altering the levels of calcium (Ca) and inorganic phosphate (P) in the medium was investigated. Hamster first upper molar tooth germs in the secretory phase of amelogenesis were exposed to 10 microM-1.31 mM (0.2-25 parts/10(6)) of F- in vitro for 2 days in the presence of either low (1.2 mM), moderate (2.1 mM) or high (4.1 mM) levels of Ca, or moderate (1.6 mM) and high (3.6 mM) levels of P. The biosynthesis and secretion of enamel matrix proteins under each of the experimental conditions were examined by labelling with [3H]-proline during the last 24 h of culture, and mineralization by labelling with 45Ca and [32P]-orthophosphate. With moderate levels of Ca and P (control medium), F- increased the uptake of 45Ca and 32P in a dose-dependent manner; F- did not inhibit the synthesis of matrix proteins but to a moderate extent impaired their secretion. In explants grown in the presence of 52 microM of F- the superficial layers of enamel matrix deposited in vitro (fluorotic matrix) failed to mineralize. Increasing P levels in the medium had no clear histological effect, whereas lowering Ca levels sometimes seemed to aggravate the F- effect. Raising Ca levels improved the histological pattern: in spite of the presence of F-, high Ca levels allowed a limited mineralization of the superficial layer of fluorotic matrix along with a strong rise in mineralization of the deeper layers of pre-exposure enamel. High Ca levels also considerably reduced the cellular changes in secretory ameloblasts induced by 52 microM of F- and slightly counteracted the inhibition of matrix secretion, as measured biochemically. Some of the effects of F- on secretory amelogenesis in vitro can thus be reversed by raising Ca levels in the medium. Therefore, the effect of F- on secretory amelogenesis in vitro seems to be primarily interference with the enamel mineralization process per se and, secondarily, an impairment of matrix secretion.
Collapse
Affiliation(s)
- A L Bronckers
- Department of Oral Cell Biology, ACTA, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
20
|
|
21
|
Evans J, Bringas P, Nakamura M, Nakamura E, Santos V, Slavkin HC. Metabolic expression of intrinsic developmental programs for dentine and enamel biomineralization in serumless, chemically-defined, organotypic culture. Calcif Tissue Int 1988; 42:220-30. [PMID: 3135087 DOI: 10.1007/bf02553747] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biomineralization was investigated using embryonic mouse mandibular first molars (M1) cultured in the presence or absence of fetal calf serum. Metabolic features including cell division and Ca2+ and phosphate incorporation into dentine and enamel extracellular matrices were analyzed. The relative timing and magnitude of DNA synthesis for serumless cultures was comparable to in vivo controls. Isotopic calcium and phosphate incorporation into the mineral phase of dentine and enamel matrices, in the absence of serum, fluctuated during development. Molar tooth morphogenesis, cytodifferentiation, and extracellular matrix formation approximated late crown-stage development in serumless cultures. Von Kossa histochemical staining indicated calcium phosphate salt formation in serumless cultures. Analysis of anhydrous fixation-prepared enamel and dentine representing serumless cultured explants indicated that crystal size and orientation were comparable to in vivo enamel and dentine. In contrast, serum-supplemented cultures showed atypical crystal size and orientation. Calcium/phosphorous (Ca/P) ratio values for serumless cultures after 21 days showed Ca/P enamel values of 2.03 (SD +/- 0.04, p less than 0.025) and dentine values of 1.89 (SD +/- 0.01, p less than 0.025). Electron diffraction patterns of enamel and dentine formed in serumless cultures were principally those of highly-ordered crystalline hydroxyapatite. Our results suggest that tissue-specific dentine and enamel biomineralization is regulated by endogenous factors intrinsic to the developmental program of embryonic tooth organs during serumless culture.
Collapse
Affiliation(s)
- J Evans
- Department of Basic Sciences (Biochemistry), School of Dentistry, University of Southern California, Los Angeles 90089-0191
| | | | | | | | | | | |
Collapse
|
22
|
Bronckers AL, Lyaruu DM, Bervoets TJ, Wöltgens JH. Autoradiographic, ultrastructural and biosynthetic study of the effect of colchicine on enamel matrix secretion and enamel mineralization in hamster tooth germs in vitro. Arch Oral Biol 1988; 33:7-16. [PMID: 3190515 DOI: 10.1016/0003-9969(88)90090-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
First upper molar tooth germs of two to three days old hamsters were exposed in vitro to colchicine in concentrations ranging between 10(-7) and 10(-4) M in the presence of 45Ca and/or [3H]-proline for various times up to 18 h. Enamel mineralization was determined by chemical extraction of in vitro incorporated 45Ca and verified ultrastructurally. Quantitative autoradiography compared with water extracts from total explants radiolabelled with [3H]-proline showed a dose-dependent decrease of grain counts over the extracellular enamel to the similar extent as the decrease in radiolabelled amelogenins in water-extracts. It was concluded that water-extracts from total explants represent amelogenins from the extracellular compartment. Enamel matrix secreted in vitro during exposure to high doses of colchicine failed to mineralize and the complete loss was provoked of the distal parts of the secretory ameloblasts including the distal junctional complexes. Nevertheless, the mineralizing pre-exposure enamel neither hypermineralized nor increased uptake of 45Ca. These data do not support the hypothesis that secretory ameloblasts restrict transepithelial calcium transport by directing most of the calcium ions away from the mineralization front. The biosynthetic data furthermore suggest that enamel matrix proteins, only extractable with guanidine-HCl-EDTA, change their physico-chemical nature during secretory amelogenesis in vitro either during secretion or upon their extracellular mineralization.
Collapse
Affiliation(s)
- A L Bronckers
- Department of Oral Cell Biology, ACTA, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
DenBesten PK, Crenshaw MA. Studies on the changes in developing enamel caused by ingestion of high levels of fluoride in the rat. Adv Dent Res 1987; 1:176-80. [PMID: 3504167 DOI: 10.1177/08959374870010020501] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exposure to chronic high levels of fluoride results in the formation of fluorosed enamel. Although enamel may be more susceptible to fluorotic effects at certain stages of development, fluoride at sufficiently high levels may affect enamel at all stages of formation. Careful study of the changes in enamel caused by chronic fluoride ingestion is needed to understand more fully the mechanisms involved in the formation of fluorotic enamel. This paper discusses the various studies we have completed to define the changes, in developing enamel of the rat incisor, caused by long-term ingestion of fluoride in drinking water. Fluoride has been found to inhibit secretion of enamel proteins. Changes in the maturation stage of enamel formation include the retention of amelogenin proteins during early maturation. The various mechanisms which have been investigated in the formation of fluorosed enamel include a direct effect of fluoride on the enamel organ, and specific interactions of fluoride with the extracellular enamel matrix. Although the same amount of protease appears to be secreted in fluorosed and control enamel, a delay in the digestion of amelogenin protein occurs. This suggests that fluoride may directly or indirectly inhibit the protease present in fluorosed enamel to slow the proteolysis of amelogenins.
Collapse
|
24
|
Lyaruu DM, de Jong M, Bronckers AL, Wöltgens JH. Ultrastructure of in-vitro recovery of mineralization capacity of fluorotic enamel matrix in hamster tooth germs pre-exposed to fluoride in organ culture during the secretory phase of amelogenesis. Arch Oral Biol 1987; 32:107-15. [PMID: 3478008 DOI: 10.1016/0003-9969(87)90053-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The recovery of mineralization capacity of fluorotic enamel matrix was investigated in 3-day-old hamster first molar tooth germs already pre-exposed in organ culture to 10 parts/10(6) F- for 24 h during the secretory phase. The germs were then cultured for another 24 h in a fresh medium without F-. The unmineralized fluorotic enamel matrix secreted in vitro eventually mineralized in the absence of F- but the orientation of the crystals compared to those in the fluorotic enamel was disturbed, especially in the younger regions of the enamel nearest cervical-loop in which the underlaying fluorotic enamel was most hypermineralized; but least disturbed in the more mature parts of the enamel organ in which the fluorotic enamel was less hypermineralized. The subsequent culture in F(-)-free medium did not abolish or reduce the degree of hypermineralization induced by F- treatment during the initial 24 h of culture. It seems that in vitro the inhibitory effect of F- on enamel matrix mineralization during the secretory phase is completely reversible when the ion is removed from the matrix environment, i.e. F(-)-induced synthesis and secretion of defective enamel matrix is not the cause of the lack of matrix mineralization. The F(-)-induced hypermineralization seems to be irreversible.
Collapse
Affiliation(s)
- D M Lyaruu
- Department of Oral Cell Biology, School of Dentistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|