1
|
Shikanai T. Molecular Genetic Dissection of the Regulatory Network of Proton Motive Force in Chloroplasts. PLANT & CELL PHYSIOLOGY 2024; 65:537-550. [PMID: 38150384 DOI: 10.1093/pcp/pcad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 12/29/2023]
Abstract
The proton motive force (pmf) generated across the thylakoid membrane rotates the Fo-ring of ATP synthase in chloroplasts. The pmf comprises two components: membrane potential (∆Ψ) and proton concentration gradient (∆pH). Acidification of the thylakoid lumen resulting from ∆pH downregulates electron transport in the cytochrome b6f complex. This process, known as photosynthetic control, is crucial for protecting photosystem I (PSI) from photodamage in response to fluctuating light. To optimize the balance between efficient photosynthesis and photoprotection, it is necessary to regulate pmf. Cyclic electron transport around PSI and pseudo-cyclic electron transport involving flavodiiron proteins contribute to the modulation of pmf magnitude. By manipulating the ratio between the two components of pmf, it is possible to modify the extent of photosynthetic control without affecting the pmf size. This adjustment can be achieved by regulating the movement of ions (such as K+ and Cl-) across the thylakoid membrane. Since ATP synthase is the primary consumer of pmf in chloroplasts, its activity must be precisely regulated to accommodate other mechanisms involved in pmf optimization. Although fragments of information about each regulatory process have been accumulated, a comprehensive understanding of their interactions is lacking. Here, I summarize current knowledge of the network for pmf regulation, mainly based on genetic studies.
Collapse
Affiliation(s)
- Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
| |
Collapse
|
2
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Babla M, Cai S, Chen G, Tissue DT, Cazzonelli CI, Chen ZH. Molecular Evolution and Interaction of Membrane Transport and Photoreception in Plants. Front Genet 2019; 10:956. [PMID: 31681411 PMCID: PMC6797626 DOI: 10.3389/fgene.2019.00956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Light is a vital regulator that controls physiological and cellular responses to regulate plant growth, development, yield, and quality. Light is the driving force for electron and ion transport in the thylakoid membrane and other membranes of plant cells. In different plant species and cell types, light activates photoreceptors, thereby modulating plasma membrane transport. Plants maximize their growth and photosynthesis by facilitating the coordinated regulation of ion channels, pumps, and co-transporters across membranes to fine-tune nutrient uptake. The signal-transducing functions associated with membrane transporters, pumps, and channels impart a complex array of mechanisms to regulate plant responses to light. The identification of light responsive membrane transport components and understanding of their potential interaction with photoreceptors will elucidate how light-activated signaling pathways optimize plant growth, production, and nutrition to the prevailing environmental changes. This review summarizes the mechanisms underlying the physiological and molecular regulations of light-induced membrane transport and their potential interaction with photoreceptors in a plant evolutionary and nutrition context. It will shed new light on plant ecological conservation as well as agricultural production and crop quality, bringing potential nutrition and health benefits to humans and animals.
Collapse
Affiliation(s)
- Mohammad Babla
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - Shengguan Cai
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - David T. Tissue
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | | | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
4
|
Fan DY, Fitzpatrick D, Oguchi R, Ma W, Kou J, Chow WS. Obstacles in the quantification of the cyclic electron flux around Photosystem I in leaves of C3 plants. PHOTOSYNTHESIS RESEARCH 2016; 129:239-51. [PMID: 26846653 DOI: 10.1007/s11120-016-0223-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/24/2016] [Indexed: 05/20/2023]
Abstract
Sixty years ago Arnon and co-workers discovered photophosphorylation driven by a cyclic electron flux (CEF) around Photosystem I. Since then understanding the physiological roles and the regulation of CEF has progressed, mainly via genetic approaches. One basic problem remains, however: quantifying CEF in the absence of a net product. Quantification of CEF under physiological conditions is a crucial prerequisite for investigating the physiological roles of CEF. Here we summarize current progress in methods of CEF quantification in leaves and, in some cases, in isolated thylakoids, of C3 plants. Evidently, all present methods have their own shortcomings. We conclude that to quantify CEF in vivo, the best way currently is to measure the electron flux through PS I (ETR1) and that through PS II and PS I in series (ETR2) for the whole leaf tissue under identical conditions. The difference between ETR1 and ETR2 is an upper estimate of CEF, mainly consisting, in C3 plants, of a major PGR5-PGRL1-dependent CEF component and a minor chloroplast NDH-dependent component, where PGR5 stands for Proton Gradient Regulation 5 protein, PGRL1 for PGR5-like photosynthesis phenotype 1, and NDH for Chloroplast NADH dehydrogenase-like complex. These two CEF components can be separated by the use of antimycin A to inhibit the former (major) component. Membrane inlet mass spectrometry utilizing stable oxygen isotopes provides a reliable estimation of ETR2, whilst ETR1 can be estimated from a method based on the photochemical yield of PS I, Y(I). However, some issues for the recommended method remain unresolved.
Collapse
Affiliation(s)
- Da-Yong Fan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Duncan Fitzpatrick
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Riichi Oguchi
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Weimin Ma
- College of Life & Environment Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Jiancun Kou
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, The Australian National University, 46 Sullivans Creek Road, Acton, ACT, 2601, Australia.
| |
Collapse
|
5
|
Clausen J, Junge W. The inhibitory effects of acidification and augmented oxygen pressure on water oxidation. PHOTOSYNTHESIS RESEARCH 2008; 98:229-233. [PMID: 18712490 DOI: 10.1007/s11120-008-9321-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 06/11/2008] [Indexed: 05/26/2023]
Abstract
Cyanobacteria, algae, and plants produce dioxygen from water. Driven and clocked by light quanta, the catalytic Mn(4)Ca Tyrosine centre accumulates four oxidizing equivalents before it abstracts four electrons from water and liberates dioxygen and protons. Intermediates of this reaction cascade are short-lived (<100 micros) and difficult to detect. By application of high oxygen pressure to cyanobacterial PSII-core-complexes, we have previously suppressed the transition from the highest oxidation state of the centre to the lowest by stabilizing a (peroxy) intermediate. Here, we investigated the inhibitory interplay of acidification and augmented oxygen pressure. Starting from pH 6.5, acidification increasingly inhibited the reduction of the highest oxidized state and resulted in a lower oxygen partial pressure for half inhibition. Oxygen and proton interfere with different steps of the reaction cascade.
Collapse
|
6
|
Cruz JA, Kanazawa A, Treff N, Kramer DM. Storage of light-driven transthylakoid proton motive force as an electric field (Deltapsi) under steady-state conditions in intact cells of Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 2005; 85:221-33. [PMID: 16075322 DOI: 10.1007/s11120-005-4731-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Accepted: 03/29/2005] [Indexed: 05/03/2023]
Abstract
Proton motive force (pmf) is physiologically stored as either a DeltapH or a membrane potential (Deltapsi) across bacterial and mitochondrial energetic membranes. In the case of chloroplasts, previous work (Cruz et al. 2001, Biochemistry 40: 1226-1237) indicates that Deltapsi is a significant fraction of pmf, in vivo, and in vitro as long as the activities of counterions are relatively low. Kinetic analysis of light-induced changes in the electrochromic shift (ECS) in intact leaves was consistent with these observations. In this work, we took advantage of the spectroscopic properties of the green alga, Chlamydomonas reinhardtii, to demonstrate that light-driven Deltapsi was stored in vivo over the hours time scale. Analysis of the light-induced ECS kinetics suggested that the steady-state Deltapsi in 400 micromol photons m(-2) s(-1) red light was between 20 and 90 mV and that this represented about 60% of the light-induced increase in pmf. By extrapolation, it was surmised that about half of total (basal and light-induced) pmf is held as Deltapsi. It is hypothesized that Deltapsi is stabilized either by maintaining low chloroplast ionic strength or by active membrane ion transporters. In addition to the strong implications for regulation of photosynthesis by the xanthophyll cycle, these results imply that pmf partitioning is important across a wide range of species.
Collapse
Affiliation(s)
- Jeffrey A Cruz
- Institute of Biological Chemistry, Washington State University, Pullman, 99164-6340, USA.
| | | | | | | |
Collapse
|
7
|
Gräber P, Trissl HW. On the rise time and polarity of the photovoltage generated by light gradients in chloroplast suspensions. FEBS Lett 2001. [DOI: 10.1016/0014-5793(81)80027-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Vinkler C, Avron M, Boyer PD. Initial formation of ATP in photophosphorylation does not require a proton gradient. FEBS Lett 2001. [DOI: 10.1016/0014-5793(78)81077-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
|
10
|
Sacksteder CA, Kanazawa A, Jacoby ME, Kramer DM. The proton to electron stoichiometry of steady-state photosynthesis in living plants: A proton-pumping Q cycle is continuously engaged. Proc Natl Acad Sci U S A 2000; 97:14283-8. [PMID: 11121034 PMCID: PMC18910 DOI: 10.1073/pnas.97.26.14283] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2000] [Accepted: 10/23/2000] [Indexed: 11/18/2022] Open
Abstract
A noninvasive technique is introduced with which relative proton to electron stoichiometries (H(+)/e(-) ratios) for photosynthetic electron transfer can be obtained from leaves of living plants under steady-state illumination. Both electron and proton transfer fluxes were estimated by a modification of our previously reported dark-interval relaxation kinetics (DIRK) analysis, in which processes that occur upon rapid shuttering of the actinic light are analyzed. Rates of turnover of linear electron transfer through the cytochrome (cyt) b(6)f complex were estimated by measuring the DIRK signals associated with reduction of cyt f and P(700). The rates of proton pumping through the electron transfer chain and the CF(O)-CF(1) ATP synthase (ATPase) were estimated by measuring the DIRK signals associated with the electrochromic shifting of pigments in the light-harvesting complexes. Electron transfer fluxes were also estimated by analysis of saturation pulse-induced changes in chlorophyll a fluorescence yield. It was shown that the H(+)/e(-) ratio, with respect to both cyt b(6)f complex and photosystem (PS) II turnover, was constant under low to saturating illumination in intact tobacco leaves. Because a H(+)/e(-) ratio of 3 at a low light is generally accepted, we infer that this ratio is maintained under conditions of normal (unstressed) photosynthesis, implying a continuously engaged, proton-pumping Q cycle at the cyt b(6)f complex.
Collapse
Affiliation(s)
- C A Sacksteder
- Institute of Biological Chemistry, Washington State University, 289 Clark Hall, Pullman, WA 99164-6340, USA
| | | | | | | |
Collapse
|
11
|
de Grey AD. Incorporation of transmembrane hydroxide transport into the chemiosmotic theory. BIOELECTROCHEMISTRY AND BIOENERGETICS (LAUSANNE, SWITZERLAND) 1999; 49:43-50. [PMID: 10619447 DOI: 10.1016/s0302-4598(99)00064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cornerstone of textbook bioenergetics is that oxidative ATP synthesis in mitochondria requires, in normal conditions of internal and external pH, a potential difference (delta psi) of well over 100 mV between the aqueous compartments that the energy-transducing membrane separates. Measurements of delta psi inferred from diffusion of membrane-permeant ions confirm this, but those using microelectrodes consistently find no such delta psi--a result ostensibly irreconcilable with the chemiosmotic theory. Transmembrane hydroxide transport necessarily accompanies mitochondrial ATP synthesis, due to the action of several carrier proteins; this nullifies some of the proton transport by the respiratory chain. Here, it is proposed that these carriers' structure causes the path of this "lost" proton flow to include a component perpendicular to the membrane but within the aqueous phases, so maintaining a steady-state proton-motive force between the water at each membrane surface and in the adjacent bulk medium. The conflicting measurements of delta psi are shown to be consistent with the response of this system to its chemical environment.
Collapse
Affiliation(s)
- A D de Grey
- Department of Genetics, University of Cambridge, UK.
| |
Collapse
|
12
|
Shabala, Newman. Light-induced changes in hydrogen, calcium, potassium, and chloride ion fluxes and concentrations from the mesophyll and epidermal tissues of bean leaves. Understanding the ionic basis of light-induced bioelectrogenesis. PLANT PHYSIOLOGY 1999; 119:1115-24. [PMID: 10069851 PMCID: PMC32094 DOI: 10.1104/pp.119.3.1115] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/1998] [Accepted: 12/04/1998] [Indexed: 05/20/2023]
Abstract
Noninvasive, ion-selective vibrating microelectrodes were used to measure the kinetics of H+, Ca2+, K+, and Cl- fluxes and the changes in their concentrations caused by illumination near the mesophyll and attached epidermis of bean (Vicia faba L.). These flux measurements were related to light-induced changes in the plasma membrane potential. The influx of Ca2+ was the main depolarizing agent in electrical responses to light in the mesophyll. Changes in the net fluxes of H+, K+, and Cl- occurred only after a significant delay of about 2 min, whereas light-stimulated influx of Ca2+ began within the time resolution of our measurements (5 s). In the absence of H+ flux, light caused an initial quick rise of external pH near the mesophyll and epidermal tissues. In the mesophyll this fast alkalinization was followed by slower, oscillatory pH changes (5-15 min); in the epidermis the external pH increased steadily and reached a plateau 3 min later. We explain the initial alkalinization of the medium as a result of CO2 uptake by photosynthesizing tissue, whereas activation of the plasma membrane H+ pump occurred 1.5 to 2 min later. The epidermal layer seems to be a substantial barrier for ion fluxes but not for CO2 diffusion into the leaf.
Collapse
Affiliation(s)
- Shabala
- School of Agricultural Science (S.S.), University of Tasmania, G.P.O. Box 252-54, Hobart, Tasmania 7001, Australia
| | | |
Collapse
|
13
|
Schönknecht G, Neimanis S, Katona E, Gerst U, Heber U. Relationship between photosynthetic electron transport and pH gradient across the thylakoid membrane in intact leaves. Proc Natl Acad Sci U S A 1995; 92:12185-9. [PMID: 11607620 PMCID: PMC40321 DOI: 10.1073/pnas.92.26.12185] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Under conditions (0.2% CO2; 1% O2) that allow high rates of photosynthesis, chlorophyll fluorescence was measured simultaneously with carbon assimilation at various light intensities in spinach (Spinacia oleracea) leaves. Using a stoichiometry of 3 ATP/CO2 and the known relationship between ATP synthesis rate and driving force (Delta pH), we calculated the light-dependent pH gradient (Delta pH) across the thylakoid membrane in intact leaves. These Delta pH values were correlated with the photochemical (qP) and nonphotochemical (qN) quenching of chlorophyll fluorescence and with the quantum yield of photosystem II (phiPSII). At Delta pH > 2.1 all three parameters (qP, qN, and phiPSII) changed very steeply with increasing DeltapH (decreasing pH in the thylakoid). The observed pH dependences followed hexacooperative titration curves with slightly different pKa values. The significance of the steep pH dependences with slightly different pKa values is discussed in relation to the regulation of photosynthetic electron transport in intact leaves.
Collapse
Affiliation(s)
- G Schönknecht
- Julius-von Sachs Institut für Biowissenschaftern der Universität Würzburg, Würzburg, Germany
| | | | | | | | | |
Collapse
|
14
|
Van Kooten O, Snel JF, Vredenberg WJ. Photosynthetic free energy transduction related to the electric potential changes across the thylakoid membrane. PHOTOSYNTHESIS RESEARCH 1986; 9:211-227. [PMID: 24442298 DOI: 10.1007/bf00029745] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/1983] [Indexed: 06/03/2023]
Abstract
A model based on our present knowledge of photosynthetic energy transduction is presented. Calculated electric potential profiles are compared with microelectrode recordings of the thylakoid electric potential during and after actinic illumination periods of intermediate duration. The information content of the measured electric response is disclosed by a comparison of experimental results with calculations. The proton flux through the ATP synthase complex is seen to markedly influence the electric response. Also the imbalance in maximum turnover rate between the two photosystems, common to obligate shade plants like Peperomia metallica used in the microelectrode experiments, is clearly reflected in the electric potential profile.
Collapse
Affiliation(s)
- O Van Kooten
- Laboratory of Plant Physiological Research, Agricultural University, Wageningen, Gen. Foulkesweg 72, 6703 BW, Wageningen, The Netherlands
| | | | | |
Collapse
|
15
|
Campo ML, Tedeschi H. Protonmotive force and photophosphorylation in single swollen thylakoid vesicles. EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 149:511-6. [PMID: 2988949 DOI: 10.1111/j.1432-1033.1985.tb08954.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Swollen vesicles generally 40 micron in diameter were prepared from spinach chloroplasts. These vesicles appear to originate from thylakoids. The present study reports results obtained with individual vesicles using micromanipulative procedures. The electric potential across the membrane was measured with microelectrodes and the pH of the internal space was calculated from the fluorescence of the pH indicator pyranine. The individual vesicles photophosphorylate as measured with luciferin-luciferase. Impalement with microelectrodes did not affect the ability of individual vesicles to photophosphorylate. However, there was no significant membrane potential either with continuous illumination or light flashes. In contrast, we found a delta pH of 3.7 under photophosphorylative conditions and the incubation with the appropriate buffers blocked photophosphorylation presumably by preventing formation of a pH gradient. We propose that, in these vesicles, the membrane potential plays no role in photophosphorylation, whereas a pH gradient is obligatory.
Collapse
|
16
|
Davenport JW, McCarty RE. An analysis of proton fluxes coupled to electron transport and ATP synthesis in chloroplast thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90252-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
AZZONE GIOVANNIFELICE, PIETROBON DANIELA, ZORATTI MARIO. Determination of the Proton Electrochemical Gradient across Biological Membranes. CURRENT TOPICS IN BIOENERGETICS 1984. [DOI: 10.1016/b978-0-12-152513-2.50008-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Giersch C. Nigericin-induced stimulation of photophosphorylation in chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90204-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Tiemann R, Witt H. Salt dependence of the electrical potential at the photosynthetic membrane in steady-state light and its structural consequence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1982. [DOI: 10.1016/0005-2728(82)90023-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Junge W. Chapter 24 Electrogenic Reactions and Proton Pumping in Green Plant Photosynthesis. CURRENT TOPICS IN MEMBRANES AND TRANSPORT 1982. [DOI: 10.1016/s0070-2161(08)60714-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Factors affecting the development of the capacity for ATP formation in isolated chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1981. [DOI: 10.1016/0005-2728(81)90050-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
|
23
|
|
24
|
Giersch C. Stimulation of photophosphorylation by low concentrations of uncoupling amines. Biochem Biophys Res Commun 1981; 100:666-74. [PMID: 6268069 DOI: 10.1016/s0006-291x(81)80227-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
Vinkler C. Opposite modulation by uncoupling and electron transport limitation of the Kmapp of ADP for photophosphorylation. Biochem Biophys Res Commun 1981; 99:1095-100. [PMID: 7259767 DOI: 10.1016/0006-291x(81)90731-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Heinz E, Westerhoff HV, van Dam K. The residual protonmotive force in mitochondria after an oxygen pulse. EUROPEAN JOURNAL OF BIOCHEMISTRY 1981; 115:107-13. [PMID: 6262076 DOI: 10.1111/j.1432-1033.1981.tb06204.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Both from irreversible thermodynamics and from mass-action kinetics it can be derived that upon anaerobiosis in an oxygen-pulse experiment the protonmotive force across a mitochondrial membrane undergoes a sudden drop. Under representative conditions the protonmotive force after the drop (the residual protonmotive force) is shown to be less than 3 kJ . mol-1 as opposed to steady-state values for the protonmotive force of 19 kJ . mol-1. It is concluded that correction for proton leakage in pulse experiments by back extrapolation underestimate proton leakage. Consequently the observed H+/O stoichiometries must underestimate the true H+/O ratios.
Collapse
|
27
|
Siggel U. Surface and/or donnan potentials at the thylakoid membrane? J Electroanal Chem (Lausanne) 1981. [DOI: 10.1016/s0022-0728(81)80227-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Surface and/or donnan potentials at the thylakoid membrane? J Electroanal Chem (Lausanne) 1981. [DOI: 10.1016/s0022-0728(81)80229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Bulychev AA, Andrianov VK, Kurella GA. Effect of dicyclohexylcarbodiimide on the proton conductance of thylakoid membranes in intact chloroplast. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 590:300-8. [PMID: 6445754 DOI: 10.1016/0005-2728(80)90201-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Kell DB. On the functional proton current pathway of electron transport phosphorylation. An electrodic view. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 549:55-99. [PMID: 38839 DOI: 10.1016/0304-4173(79)90018-1] [Citation(s) in RCA: 242] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Schapendonk AH, Vredenberg WJ. Salt-induced absorbance changes of P-515 in broken chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 462:613-21. [PMID: 597495 DOI: 10.1016/0005-2728(77)90105-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Absorbance changes, caused by adding KCl to a suspension of broken chloroplasts in the presence of a low concentration of MgCl2, have been measured in the wavelength region 460-540 nm. The magnitude of the KCl-induced absorbance changes is shown to be proportional to the logarithm of the KCL concentration gradient initially induced across the thylakoid membrane. The difference spectrum of these absorbance changes is shown to be identical with the spectrum of the light-induced absorbance changes, which has been attributed to an electrochromic shift of p-515. This is interpreted as evidence that under these conditions salt-induced absorbance changes of P-515 occur in response to a membrane diffusion potential. The results indicate that the electrogenic potential across the thylakoid membrane, generated by a single turnover light flash, is in the range between 15 and 35 mV.
Collapse
|
32
|
Hong FT. Photoelectric and magneto-orientation effects in pigmented biological membranes. J Colloid Interface Sci 1977. [DOI: 10.1016/0021-9797(77)90158-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Bulychev AA, Vredenberg WJ. Effect of ionophores A23187 and nigericin on the light-induced redistribution of Mg2+, K+ and H+ across the thylakoid membrane. AJNR Am J Neuroradiol 1976; 449:48-58. [PMID: 10009 PMCID: PMC8333438 DOI: 10.1016/0005-2728(76)90006-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/1979] [Accepted: 09/12/1979] [Indexed: 12/12/2022]
Abstract
Passive redistributions of Mg2+ and K+ ions across the thylakoid membranes, occurring in association with the light-driven electrogenic influx of hydrogen ions have been examined in suspensions of broken spinach chloroplasts under a variety of conditions. (i) In accord with results of Hind el al. (Proc. Natl. Acad. Sci. U.S. (1974) 71, 1484), it was found that at a low K/Mg concentration ratio in the medium, the K-efflux is negligibly small, whereas a substantial Mg-efflux is observed. The converse is true when the K/Mg concentration ratio in the medium is high. (ii) In the presence of A23187, which was found to cause approximately a 60% inhibition of the light-induced pH-gradient, a significant influx of Mg2+ was observed in the light at a high K/Mg concentration ratio. Conversely the Mg-influx was small in the presence of A23187 when the K/Mg concentration ratio in the medium was low. Under these conditions, the Mg-influx was considerably increased upon the addition of valinomycin. A23187 was found not to affect the K-efflux in the light. (iii) The light-induced K-influx observed in the presence of nigericin also was found to be dependent on the concentration ratio of the monovalent and divalent cation. Its magnitude increased upon an increase in the K/Mg ratio. The results are interpreted in terms of a simplified model in which the total passive efflux of cations, driven by the potential set by the electrogenic proton pump, is considered to be a constant fraction of the proton influx. According to this, an increase in the flux of an ion species, induced either by raising its concentration, or by increasing its permeability through the membrane, will cause a decrease in the flux of the other cations. The relevance of the results is discussed with respect to conclusions about the involvement and relative magnitudes of the passive K and Mg effluxes across the thylakoid membrane during energization of intact chloroplasts and chloroplasts in situ.
Collapse
|
34
|
Changes in the electrical potential across the thylakoid membranes of illuminated intact chloroplasts in the presence of membrane-modifying agents. ACTA ACUST UNITED AC 1976. [DOI: 10.1016/0304-4211(76)90079-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Papa S. Proton translocation reactions in the respiratory chains. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 456:39-84. [PMID: 178381 DOI: 10.1016/0304-4173(76)90008-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Bulychev AA, Vredenberg WJ. The effect of cations and membrane permeability modifying agents on the dark kinetics of the photoelectric response in isolated chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 423:548-56. [PMID: 769824 DOI: 10.1016/0005-2728(76)90207-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The kinetics of the photoelectric response induced by saturating light pulses were studied in isolated chloroplasts of Peperomia metallica as a function of K+- and Mg2+-concentrations in the medium in the absence and presence of ionophores for K+ and divalent cations. The dark decay of the potential generated in the light is found to be accelerated upon an increase in K+- or Mg2+-concentrations in the presence of valinomycin and A23187. An acceleration of the decay phase in the flash-induced response is also observed immediately after preillumination of the chloroplast. It is concluded that the dark kinetics of the potential decay after short and long light exposures are controlled by two different processes with rate constants of about 20 and 0.2s-1, respectively.
Collapse
|