1
|
Eaton-Rye JJ. Govindjee at 80: more than 50 years of free energy for photosynthesis. PHOTOSYNTHESIS RESEARCH 2013; 116:111-44. [PMID: 24113923 DOI: 10.1007/s11120-013-9921-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/26/2013] [Indexed: 05/23/2023]
Abstract
We provide here a glimpse of Govindjee and his pioneering contributions on the two light reactions and the two pigment systems, particularly on the water-plastoquinone oxido-reductase, Photosystem II. His focus has been on excitation energy transfer; primary photochemistry, and the role of bicarbonate in electron and proton transfer. His major tools have been kinetics and spectroscopy (absorption and fluorescence), and he has provided an understanding of both thermoluminescence and delayed light emission in plants and algae. He pioneered the use of lifetime of fluorescence measurements to study the phenomenon of photoprotection in plants and algae. He, however, is both a generalist and a specialist all at the same time. He communicates very effectively his passion for photosynthesis to the novice as well as professionals. He has been a prolific author, outstanding lecturer and an editor par excellence. He is the founder not only of the Historical Corner of Photosynthesis Research, but of the highly valued Series Advances in Photosynthesis and Respiration Including Bioenergy and Related Processes. He reaches out to young people by distributing Z-scheme posters, presenting Awards of books, and through tri-annual articles on "Photosynthesis Web Resources". At home, at the University of Illinois at Urbana-Champaign, he has established student Awards for Excellence in Biological Sciences. On behalf of all his former graduate students and associates, I wish him a Happy 80th birthday. I have included here several tributes to Govindjee by his well-wishers. These write-ups express the high regard the photosynthesis community holds for "Gov" and illuminate the different facets of his life and associations.
Collapse
Affiliation(s)
- Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand,
| |
Collapse
|
2
|
Stirbet A. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase, the J-I-P rise. PHOTOSYNTHESIS RESEARCH 2012; 113:15-61. [PMID: 22810945 DOI: 10.1007/s11120-012-9754-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 05/29/2012] [Indexed: 05/03/2023]
Abstract
The fast (up to 1 s) chlorophyll (Chl) a fluorescence induction (FI) curve, measured under saturating continuous light, has a photochemical phase, the O-J rise, related mainly to the reduction of Q(A), the primary electron acceptor plastoquinone of Photosystem II (PSII); here, the fluorescence rise depends strongly on the number of photons absorbed. This is followed by a thermal phase, the J-I-P rise, which disappears at subfreezing temperatures. According to the mainstream interpretation of the fast FI, the variable fluorescence originates from PSII antenna, and the oxidized Q(A) is the most important quencher influencing the O-J-I-P curve. As the reaction centers of PSII are gradually closed by the photochemical reduction of Q(A), Chl fluorescence, F, rises from the O level (the minimal level) to the P level (the peak); yet, the relationship between F and [Q(A) (-)] is not linear, due to the presence of other quenchers and modifiers. Several alternative theories have been proposed, which give different interpretations of the O-J-I-P transient. The main idea in these alternative theories is that in saturating light, Q(A) is almost completely reduced already at the end of the photochemical phase O-J, but the fluorescence yield is lower than its maximum value due to the presence of either a second quencher besides Q(A), or there is an another process quenching the fluorescence; in the second quencher hypothesis, this quencher is consumed (or the process of quenching the fluorescence is reversed) during the thermal phase J-I-P. In this review, we discuss these theories. Based on our critical examination, that includes pros and cons of each theory, as well mathematical modeling, we conclude that the mainstream interpretation of the O-J-I-P transient is the most credible one, as none of the alternative ideas provide adequate explanation or experimental proof for the almost complete reduction of Q(A) at the end of the O-J phase, and for the origin of the fluorescence rise during the thermal phase. However, we suggest that some of the factors influencing the fluorescence yield that have been proposed in these newer theories, as e.g., the membrane potential ΔΨ, as suggested by Vredenberg and his associates, can potentially contribute to modulate the O-J-I-P transient in parallel with the reduction of Q(A), through changes at the PSII antenna and/or at the reaction center, or, possibly, through the control of the oxidation-reduction of the PQ-pool, including proton transfer into the lumen, as suggested by Rubin and his associates. We present in this review our personal perspective mainly on our understanding of the thermal phase, the J-I-P rise during Chl a FI in plants and algae.
Collapse
|
3
|
Trissl HW, Gao Y, Wulf K. Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. Biophys J 2010; 64:974-88. [PMID: 19431889 DOI: 10.1016/s0006-3495(93)81463-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence induction curves were calculated from a molecular model for the primary photophysical and photochemical processes of photosystem II that includes reversible exciton trapping by open (PHQ(A)) and closed (PHQ(-) (A)) reaction centers (RCs), charge stabilization as well as quenching by oxidized (P(+)HQ((-)) (A)) RCs. For the limiting case of perfectly connected photosynthetic units ("lake model") and thermal equilibrium between the primary radical pair (P(+)H(-)) and the excited singlet state, the primary reactions can be mathematically formulated by a set of coupled ordinary differential equations (ODE). These were numerically solved for weak flashes in a recursive way to simulate experiments with continuous illumination. Using recently published values for the molecular rate constants, this procedure yielded the time dependence of closed RCs as well as of the fluorescence yield (= fluorescence induction curves). The theoretical curves displayed the same sigmoidal shapes as experimental fluorescence induction curves. From the time development of closed RCs and the fluorescence yield, it was possible to check currently assumed proportionalities between the fraction of closed RCs and either (a) the variable fluorescence, (b) the complementary area above the fluorescence induction curve, or (c) the complementary area normalized to the variable fluorescence. By changing selected molecular rate constants, it is shown that, in contrast to current beliefs, none of these correlations obeys simple laws. The time dependence of these quantities is strongly nonexponential. In the presence of substances that quench the excited state, the model predicts straight lines in Stern-Volmer plots. We further conclude that it is impossible to estimate the degree of physical interunit energy transfer from the sigmoidicity of the fluorescence induction curve or from the curvature of the variable fluorescence plotted versus the fraction of closed RCs.
Collapse
Affiliation(s)
- H W Trissl
- Abt. Biophysik, Fachbereich Biologie/Chemie, Universität Osnabrück, D-4500 Osnabrück, Germany
| | | | | |
Collapse
|
4
|
Maróti P, Lavorel J. INTENSITY AND TIME-DEPENDENCE OF THE CAROTENOID TRIPLET QUENCHING UNDER LIGHT FLASHES OF RECTANGULAR SHAPE IN CHLORELLA. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1979.tb07832.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Xu C, Rogers SM, Goldstein C, Widholm JM. Fluorescence characteristics of photoautotrophic soybean cells. PHOTOSYNTHESIS RESEARCH 1989; 21:93-106. [PMID: 24424528 DOI: 10.1007/bf00033363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/1988] [Accepted: 10/10/1988] [Indexed: 06/03/2023]
Abstract
We report here the first measurements on chlorophyll (Chl) a fluorescence characteristics of photoautotrophic soybean cells (cell lines SB-P and SBI-P). The cell fluorescence is free from severe distortion problems encountered in higher plant leaves. Chl a fluorescence spectra at 77 K show, after correction for the spectral sensitivity of the photomultiplier and the emission monochromator, peaks at 688, 696 and 745 nm, representing antenna systems of photosystem II-CP43 and CP47, and photosystem I, respectively. Calculations, based on the complementary area over the Chl a fluorescence induction curve, indicated a ratio of 6 of the mobile plastoquinone (including QB) to the primary stable electron acceptor, the bound plastoquinone QA. A ratio of one between the secondary stable electron acceptor, bound plastoquinone QB, and its reduced form QB (-) was obtained by using a double flash technique. Owing to this ratio, the flash number dependence of the Chl a fluorescence showed a distinct period of four, implying a close relationship to the 'S' state of the oxygen evolution mechanism. Analysis of the QA (-) reoxidation kinetics showed (1) the halftime of each of the major decay components (∼ 300 μs fast and ∼ 30 ms slow) increases with the increase of diuron and atrazine concentrations; and (2) the amplitudes of the fast and the slow components change in a complementary fashion, the fast component disappearing at high concentrations of the inhibitors. This implies that the inhibitors used are able to totally displace QB. In intact soybean cells, the relative amplitude of the 30 ms to 300 μs component is higher (40:60) than that in spinach chloroplasts (30:70), implying a larger contribution of the centers with unbound QB. SB-P and SBI-P soybean cells display a slightly different sensitivity of QA (-) decay to inhibitors.
Collapse
Affiliation(s)
- C Xu
- Department of Physiology and Biophysics, University of Illinois at Urbana-Champaign, 61801, IL, USA
| | | | | | | |
Collapse
|
6
|
Electron transfer through the quinone acceptor complex of Photosystem II in bicarbonate-depleted spinach thylakoid membranes as a function of actinic flash number and frequency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90220-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Yamashita T. Modification of oxygen evolving center by Tris-washing. PHOTOSYNTHESIS RESEARCH 1986; 10:473-481. [PMID: 24435395 DOI: 10.1007/bf00118313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tris-washing inhibits the O2-evolving center of chloroplasts and their particles specifically and reversibly, and it was applied to many investigations on O2-evolving center and PS II reaction center. In this review are introduced the various photosynthetic investigations in which Tris-washing was applied and are also discussed briefly on the site and the mechanism of Tris-inactivation, properties of P680 and Z, characteristic change in fluorescence and delayed light emission, and reactivation of O2-evolving center by DCPIP.H2-treatment and photo-reactivation of Tris-washed chloroplasts and their particles.
Collapse
Affiliation(s)
- T Yamashita
- Institute of Biological Sciences, Tsukuba University, Sakura-mura, 305, Ibaraki, Japan
| |
Collapse
|
8
|
|
9
|
The charge accumulation mechanism in NaCl-washed and in Ca2+-reactivated Photosystem-II particles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90003-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Trissl HW, Kunze U. II. Primary electrogenic reactions in chloroplasts probed by picosecond flash-induced dielectric polarization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90089-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Buttner WJ, Babcock GT. Precursors to microsecond delayed luminescence in oxygenevolving and inhibited chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90197-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Theg SM, Jursinic PA, Homann PH. Studies on the mechanism of chloride action on photosynthetic water oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90125-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Jursinic P. Effects of hydroxylamine and silicomolybdate on the decay in delayed light emission in the 6-100 μs range after a single 10 ns flash in pea thylakoids. PHOTOSYNTHESIS RESEARCH 1982; 3:161-177. [PMID: 24458283 DOI: 10.1007/bf00032254] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/1982] [Indexed: 06/03/2023]
Abstract
Measurements are reported on μs delayed light emission, following a single 10 ns excitation flash, in Alaska pea thylakoids treated with hydroxylamine (NH2OH) or with silicomolybdate. 1. In thylakoids treated with 2 mM NH2OH in the light, or in the dark, the quantum yield of delayed light emission is considerably enhanced. A 10 μs lifetime component of delayed light emission is not significantly changed, whereas a 50-70 μs lifetime component is increased. MnCl2 and diphenylcarbazide are unable to reverse the above effects of NH2OH treatment. Thus Mn(2+) and diphenylcarbazide must not donate electrons directly to reaction center II but on the oxygen-evolution side of the NH2OH block. 2. When the closed form of photosystem II reaction centers (P680Q(-)), where P680 is the reaction center chlorophyll and Q is a 'stable' electron acceptor, is generated by preillumination of NH2OH-treated thylakoids with diuron present, the μs delayed light emission is inhibited, but a low level residual delayed light emission remains. Possible origins of this emission are discussed. It is believed that the best explanation for residual DLE is the existence of another acceptor besides Q that partakes in charge separation and rapid dissipative recombination when the reaction center is in the P680Q(-) state. 3. The quantum yield of delayed light emission from 'closed' reaction centers (P680 (+)Q(-)) that have all charge stabilization reactions (i.e., flow of electrons to P680 (+) and out of Q(-)) blocked by NH2OH treatment and addition of diuron is 1.1×10(-3) for components measured in a range from 6 to 400 μs and extrapolated to zero time. 4. The addition of silicomolybdate, which accepts electron from Q(-), causes delayed light emission in the μs range to be greatly inhibited.
Collapse
Affiliation(s)
- P Jursinic
- Northern Regional Research Center, Agricultural Research Service, U.S. Department of Aggiculture, 61604, Feoria, Illinois, (USA)
| |
Collapse
|
14
|
Sonneveld A, Rademaker H, Duysens LN. Transfer and trapping of excitation energy in photosystem II as studied by chlorophyll alpha 2 fluorescence quenching by dinitrobenzene and carotenoid triplet. The matrix model. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 593:272-89. [PMID: 6786339 DOI: 10.1016/0005-2728(80)90065-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
1. The curves representing the reciprocal fluorescence yield of chlorophyll alpha of Photosystem II (PS II) in Chlorella vulgaris as a function of the concentration of m-dinitrobenzene in the states P Q and P Q-, are found to be straight parallel lines; P is the primary donor and Q the primary acceptor of PS II. In the weakly trapping state P Q- the half-quenching of dinitrobenzene is about 0.2 mM, in vitro it is of the order of 10 mM. The fluorescence yield as a function of the concentration of a quencher is described for three models for the energy transfer between the units, and the matrix model. If it is assumed that the rate constant of quenching by dinitrobenzene is high and thus the number of dinitrobenzene molecules per reaction center low, it can be concluded that the pigment system of PS II in C. vulgaris is a matrix of chlorophyll molecules in which the reaction centers are embedded. Theoretical and experimental evidence is consistent with such an assumption. For Cyanidium caldarium the zero fluorescence yield phi 0 and its quenching by dinitrobenzene were found to be much smaller than the corresponding quantities for C. vulgaris. Nevertheless, our measurements on C. caldarium could be interpreted by the assumption that the essential properties (rate constants, dinitrobenzene quenching) of PS II are the same for these two species belonging to such widely different groups. 2. The measured dinitrobenzene concentrations required for half-quenching in vivo and other observations are explained by (non-rate-limiting) energy transfer between the chlorophyll alpha molecules of PS II and by the assumptions that dinitrobenzene is approximately distributed at random in the membrane and does not diffuse during excitation. 3. The fluorescence kinetics of C. vulgaris during a 350 ns laser flash of variable intensity could be simulated on a computer using the matrix model. From the observed fluorescence quenching by the carotenoid triplet (CT) and the measurement of the the number of CT per reaction center via difference absorption spectroscopy, the rate constant for quenching of CT is calculated to be kT = 3.3 . 10(11)s-1 which is almost equal to the rate constant of trapping by an open reaction center (Duysens, L.N.M. (1979) CIBA Foundation Symposium 61 (New Series), pp. 323--340). 4. The fluorescence quenching by CT in non-treated spinach chloroplasts after a 500 ns laser flash (Breton, J., Geacintov, N.E. and Swenberg, C.E. (1979) Biochim, Biophys. Acta 548, 616--635) could be explained within the framework of the matrix model when the value for kT is used as given in point 3. 5. The observations mentioned under point 1 indicate that the fluorescence yield phi 0 for centers in trapping state P Q is probably for a fraction exceeding 0.8 emitted by PS II.
Collapse
|
15
|
Bouges-Bocquet B. Kinetic models for the electron donors of photosystem II of photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 594:85-103. [PMID: 7016183 DOI: 10.1016/0304-4173(80)90006-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
16
|
Conjeaud H, Mathis P. The effects of pH on the reductions kinetics of P-680 in Tris-treated chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 590:353-9. [PMID: 7378394 DOI: 10.1016/0005-2728(80)90206-6] [Citation(s) in RCA: 125] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The primary donor of Photosystem II (PS II), P-680, was photo-oxidized by a short flash and its rate of reduction was measured at different pH values by following the recovery of the absorption change at 820 nm in chloroplasts pretreated with a high concentration of Tris. The re-duction is biphasic with a fast phase (dominant after the first flash) attributed to the donation by a donor, D1, and a slow phase (usually dominant after the second flash) attributed to a back-reaction with the primary acceptor. It is found that pH has a strong influence on the donation from D1 (PI = 2 MICROSECONDS AT PH 9, 44 microseconds at pH 4), but no influence on the back reaction (pi approximately 200 microseconds). pH also influences the stability of the charge separation since the contribution of donation from D1 at the second flash increases at lower pH, getting close to 100% at pH 4.
Collapse
|
17
|
Renger G. A rapid vectorial back reaction at the reaction centers of photosystem II in tris-washed chloroplasts induced by repetitive flash excitation. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 547:103-16. [PMID: 223633 DOI: 10.1016/0005-2728(79)90099-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In Tris-washed chloroplasts, completely lacking the oxygen-evolving capacity, absorption changes in the range of 420--560 nm induced by repetitive flash excitation have been measured in the presence and absence of electron donors. It was found: (1) At 520 nm flash-induced absorption changes are observed, which predominantly decay via a 100--200-mus exponential kinetics corresponding to that of the back reaction between the primary electron donor and acceptor of Photosystem II (Haveman, J. and Mathis, P. (1976) Biochim. Biophys. Acta 440, 346--355; Renger, G. and Wolff, Ch. (1976) Biochim. Biophys. Acta 423, 610--614). In the presence of hydroquinone/ascorbate as donor couple the amplitude is nearly doubled and the decay becomes significantly slowed down. (2) The difference spectrum of the absorption changes obtained in the presence of hydroquinone/ascorbate, which are sensitive to ionophores, is nearly identical with that of normal chloroplasts in the range of 460--560 nm (Emrich, H.M., Junge, W. and Witt, H.T. (1969) Z. Naturforsch. 24b, 114--1146). In the absence of hydroquinone/ascorbate the difference spectrum of the absorption changes, characterized by a 100--200-mus decay kinetics, differs in the range of 460--500 nm and by a hump in the range of 530--560 nm. The hump is shown to be attributable to the socalled C550 absorption change, which reflects the turnover of the primary acceptor of Photosystem II (van Gorkom, H.J.(1976) Thesis, Leiden), while the deviations in the range of 460--500 nm are understandable as to be due to the overlapping absorption changes of chlorphyll alpha II+. The problems arising with the latter explanation are discussed. (3) The electron transfer due to the rapid turnover at Photosystem II, which can be induced by flash groups with a short dark time between the flashes, is not able to energize the ATPase and to drive photophosphorylation. On the basis of the present results it is inferred, that in Tris-washed chloroplasts under repetitive flash excitation a rapid transmembrane vectorial electron shuttle takes place between the primary acceptor (X320) and donor (Chl alpha II) of Photosystem II, which is not able to energize the photophosphorylation. Furthermore, the data are shown to confirm the localization of X320 and Chl alpha II within the thylakoid membrane at the outer and inner side, respectively.
Collapse
|
18
|
Conjeaud H, Mathis P, Paillotin G. Primary and secondary electron donors in photosystem II of chloroplasts. Rates of electron transfer and location in the membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 546:280-91. [PMID: 444497 DOI: 10.1016/0005-2728(79)90046-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Absorption changes at 820 or 515 nm after a short laser flash were studied comparatively in untreated chloroplasts and in chloroplasts in which oxygen evolution is inhibited. In chloroplasts pre-treated with Tris, the primary donor of Photosystem II (P-680) is oxidized by the flash it is re-reduced in a biphasic manner with half-times of 6 microseconds (major phase) and 22 microseconds. After the second flash, the 6 microseconds phase is nearly absent and P-680+ decays with half-times of 130 microseconds (major phase) and 22 microseconds. Exogenous electron donors (MnCl2 or reduced phenylenediamine) have no direct influence on the kinetics of P-680+. In untreated chloroplasts the 6 and 22 microseconds phases are of very small amplitude, either at the 1st, 2nd or 3rd flash given after dark-adaptation. They are observed, however, after incubation with 10 mM hydroxylamine. These results are interpreted in terms of multiple pathways for the reduction of P-680+: a rapid reduction (less than 1 microseconds) by the physiological donor D1; a slower reduction (6 and 22 microseconds) by donor D'1, operative when O2 evolution is inhibited; a back-reaction (130 microseconds) when D'1 is oxidized by the pre-illumination in inhibited chloroplasts. In Tris-treated chloroplasts the donor system to P-680+ has the capacity to deliver only one electron. The absorption change at 515 nm (electrochromic absorption shift) has been measured in parallel. It is shown that the change linked to Photosystem II activity has nearly the same magnitude in untreated chloroplasts or in chloroplasts treated with hydroxylamine or with Tris (first and subsequent flashes). Thus we conclude that all the donors (P-680, D1, D'1) are located at the internal side of the thylakoid membrane.
Collapse
|
19
|
Horton P, Croze E. Characterization of two quenchers of chlorophyll fluorescence with different midpoint oxidation-reduction potentials in chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 545:188-201. [PMID: 31935 DOI: 10.1016/0005-2728(79)90125-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The properties of two redox quenchers of chlorophyll fluorescence in chloroplasts at room temperature have been investigated. (1) Redox titration of the fluorescence yield reveals two n = 1 components with Em7.8 at--45 and --247 mV, accounting for approx. 70 and 30% of the total yield, respectively. (2) Neutral red, a redox mediator often used at redox potentials below --300 mV, preferentially quenches the fluorescence controlled by the --247 mV component. Titrations using neutral red artifactually create an n = 2 quenching component with Em7.8 = --375 mV. (3) Analysis of fluorescence induction curves recorded at different redox potentials indicates that both the --45 and --247 mV components can be photochemically reduced. The reduction of the --247 mV component corresponds to a fast phase of the induction curve whilst the slower reduction of the 45 mV component accounts for the tail phase. (4) The excitation spectra for the fluorescence controlled by the two quenchers show small differences in the ratio of chlorophyll a and b. (5) Whereas the --247 mV component readily shows a 60 mV per pH unit dependency on solution pH, the ability of the --45 mV component to respond to pH change is restricted. (6) Triton Photosystem II particles contain both quenchers but the --247 mV component accounts for approx. 70% of the fluorescence and the high component has an Em7.8 of +48 mV. The relative merits of sequential and parallel models in explaining the presence of the two quenchers are considered.
Collapse
|
20
|
Wong D, Jursinic P. ANALYSIS OF MICROSECOND FLUORESCENCE YIELD AND DELAYED LIGHT EMISSION CHANGES AFTER A SINGLE FLASH IN PEA CHLOROPLASTS: EFFECTS OF MONO- AND DIVALENT CATIONS. Photochem Photobiol 1978. [DOI: 10.1111/j.1751-1097.1978.tb07735.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Swenberg CE, Geacintov NE, Breton J. LASER PULSE EXCITATION STUDIES OF THE FLUORESCENCE OF CHLOROPLASTS. Photochem Photobiol 1978. [DOI: 10.1111/j.1751-1097.1978.tb07738.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
van Rensen JJ. Bicarbonate effects on the electron flow in isolated broken chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 505:183-213. [PMID: 363148 DOI: 10.1016/0304-4173(78)90012-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Horton P, Croze E, Smutzer G. Interactions between photosystem II components in chloroplast membranes. A correlation between the existence of a low potential species of cytochrome b-559 and low chlorophyll fluorescence in inhibited and developing chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 503:274-86. [PMID: 687609 DOI: 10.1016/0005-2728(78)90188-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. Chloroplasts inhibited by incubation with hydroxylamine in the light exhibit a low fluorescence yield upon illumination in the presence of dithionite sufficient to completely reduce the primary acceptor, Q. In the absence of magnesium ions, the fluorescence yield is the same as in control chloroplasts, suggesting that the reason for the low yield is a defect in the mechanism by which Mg2+ enhances the fluorescence. These chloroplasts were previouly shown to contain only low potential (Em7.8 = +80 mV) cytochrome b-559 (Horton, P. and Croze, E (1977) Biochim. Biophys. Acta 462, 86-101). 2. In Photosystem II particles, in heat-treated chloroplasts and in trypsin-digested chloroplasts, high potential cytochrome b-559 is absent and the variable fluorescence yield is again low. 3. Peas grown under intermittent light contain only one-fifth of the content of high potential cytochrome b-559 seen in fully greened plants, yet show high rates of water to methyl viologen electron transport. Aquisition of the high potential cytochrome b-559 accompanies synthesis of chlorophyll b, the onset of Mg-stimulated fluorescence and an increased variable yield of fluorescence. A similar correlation was seen during greening of dark-grown barley. 4. It is proposed that the high potential state of cytochrome b-559 is due to the same membrane properties which allow cation enhanced variable fluorescence, so that the presence of low potential cytochrome b-559 is accompanied by a decrease in variable fluorescence yield.
Collapse
|
24
|
van Best JA, Mathis P. Kinetics of reduction of the oxidized primary electron donor of photosystem II in spinach chloroplasts and in Chlorella cells in the microsecond and nanosecond time ranges following flash excitation. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 503:178-88. [PMID: 667026 DOI: 10.1016/0005-2728(78)90170-6] [Citation(s) in RCA: 174] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Absorption changes (deltaA) at 820 nm, following laser flash excitation of spinach chloroplasts and Chlorella cells, were studied in order to obtain information on the reduction time of the photooxidized primary donor of Photosystem II at physiological temperatures. In the microsecond time range the difference spectrum of deltaA between 750 and 900 nm represents a peak at 820 nm, attributable to a radical-cation of chlorophyll a. In untreated dark-adapted material the signal can be attributed solely to P+-700; it decays in a polyphasic manner with half-times of 17 microseconds, 210 microseconds and over 1 ms. The oxidized primary donor of Photosystem II (P+II) is not detected with a time resolution of 3 microseconds. After treatment with 3--10 mM hydroxylamine, which inhibits the donor side of Photosystem II, P+II is observed and decays biphasically (a major phase with t1/2=20--40 microseconds, and a minor phase with t1/2 congruent to 200 microseconds), probably by reduction by an accessory electron donor. In the nanosecond range, which was made accessible by a new fast-response flash photometer operating at 820 nm, it was found the P+II is reduced with a half-time of 25--45 ns in untreated dark-adapted chloroplasts. It is assumed that the normal secondary electron donor is responsible for this fast reduction.
Collapse
|
25
|
Jursinic P, Wraight CA. MEMBRANE POTENTIAL AND MICROSECOND TO MILLISECOND DELAYED LIGHT EMISSION AFTER A SINGLE EXCITATION FLASH IN ISOLATED CHLOROPLASTS. Photochem Photobiol 1978. [DOI: 10.1111/j.1751-1097.1978.tb07566.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|