Zabelin AA, Shkuropatova VA, Shuvalov VA, Shkuropatov AY. Spectral and Photochemical Properties of Rhodobacter sphaeroides R-26 Reaction Center Films in Vacuum.
BIOCHEMISTRY (MOSCOW) 2019;
84:1107-1115. [PMID:
31693470 DOI:
10.1134/s000629791909013x]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Using absorption spectroscopy in the visible/near-IR and mid-IR regions, spectral and photochemical properties of isolated reaction centers (RCs) from Rhodobacter sphaeroides R-26 were studied in dried films on the inorganic support surface (quartz or CaF2 plates) under vacuum dehydration conditions (10-2 or 7·10-5 mm Hg). Three detergents, N,N-dimethyldodecylamine N-oxide (LDAO), Triton X-100 (TX100), and n-dodecyl-β-D-maltoside (DM), were tested for their ability to stabilize the RC-detergent complexes in the vacuum-dried state. It was shown that in the presence of LDAO, RC complexes underwent destruction in vacuum. In contrast, DM provided an environment that minimized irreversible disruptive changes in the RCs in vacuum. The effects of vacuum dehydration on the RC-DM films included a small increase in the content of α-helices in the RC protein, a short-wavelength reversible shift in the optical transitions of pigments, and minor changes in the electronic structure of the P+ dimer. The films retained their photochemical activity upon excitation with high-intensity light (200 mW/cm2). TX100 also helped to maintain spectral and functional properties of the RCs in vacuum; however, in this case, the stabilizing effect was less pronounced than in the presence of DM, especially, at high detergent concentrations. The results are discussed within the framework of a model suggesting that the detergent-protein interactions and the properties of detergent micelles play a dominant role in maintaining the structure of the RCs upon vacuum dehydration of the RC complexes. The obtained data can be useful for developing hybrid photoconverting systems based on bacterial RCs.
Collapse