1
|
Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1604-16. [PMID: 22554985 DOI: 10.1016/j.bbamcr.2012.04.008] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Hyung J Kim
- University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
2
|
Hemrika W, Berden JA, Grivell LA. A region of the C-terminal part of the 11-kDa subunit of ubiquinol-cytochrome-c oxidoreductase of the yeast Saccharomyces cerevisiae contributes to the structure of the Qout reaction domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 215:601-9. [PMID: 8394810 DOI: 10.1111/j.1432-1033.1993.tb18071.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
QCR8, the gene encoding the 11-kDa subunit of ubiquinol-cytochrome-c oxidoreductase of the yeast Saccharomyces cerevisiae has been resequenced in the course of a search for mutants disturbed in subunit function. Resequencing shows that the previously published sequence [Maarse A.C. & Grivell L.A. (1987) Eur. J. Biochem 155, 419-425] lacks a C at position 185 of the coding sequence. As a result of this extra nucleotide, the reading frame now contains 285 base pairs and it codes for a protein of 94 amino acids with a calculated molecular mass of 11.0 kDa. Despite the altered C-terminus, similarity to the corresponding beef heart subunit is not significantly altered. One mutant (LTN1), arising from hydroxylamine mutagenesis, has been studied in detail: Assembly of the enzyme appears to be normal, as judged from the levels of the subunits observed in Western blots, while spectral analysis showed that only holo-cytochrome b was lowered to 70% of that of the wildtype. Measurement of the specific activity and calculation of the turnover number of the enzyme showed that these were 45% and 56% of that of the wild type, respectively. Further analysis of the mutant showed that the affinity for the inhibitor myxothiazol was decreased, that the 11-kDa subunit stabilises the enzyme once assembly has occurred, and that the reduction of cytochrome b via the Qout site is impaired. Sequence analysis showed that this mutant carries a deletion of 12 nucleotides at position 206-217 of the coding sequence, resulting in the replacement of residues 69-73 (WWKNG) by a cysteine. These results are discussed in terms of the 11-kDa subunit contributing to the conformation of the Qout binding domain.
Collapse
Affiliation(s)
- W Hemrika
- E.C. Slater Institute, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
3
|
Bechmann G, Schulte U, Weiss H. Chapter 8 Mitochondrial ubiquinol—cytochrome c oxidoreductase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60176-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
4
|
Hemrika W, Berden JA. Membrane topography of the subunits of ubiquinol-cytochrome-c oxidoreductase of Saccharomyces cerevisiae. The 14-kDa and the 11-kDa subunits face opposite sides of the mitochondrial inner membrane. EUROPEAN JOURNAL OF BIOCHEMISTRY 1990; 192:761-5. [PMID: 2170131 DOI: 10.1111/j.1432-1033.1990.tb19287.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The topology of the subunits of ubiquinol-cytochrome-c oxidoreductase of the yeast Saccharomyces cerevisiae has been determined using a digitonin/proteinase K assay. With this assay we were able selectively to disrupt the mitochondrial membranes and to identify the subunits which became proteinase-K sensitive after disruption of either the outer or both outer and inner membranes. This approach confirmed previous indications for the localization of the core I protein, cytochrome c1, cytochrome b, the FeS protein and the 17-kDa subunit, while it also provided direct evidence for the site of accessibility to proteinase K of the 14-kDa and 11-kDa subunits. The 14-kDa subunit faces the mitochondrial matrix and the 11-kDa subunit faces the intermembrane space.
Collapse
Affiliation(s)
- W Hemrika
- E.C. Slater Institute for Biochemical Research, University of Amsterdam, The Netherlands
| | | |
Collapse
|
5
|
de Vries S, van Hoek AN, Berden JA. The oxidation-reduction kinetics of cytochromes b, c1 and c in initially fully reduced mitochondrial membranes are in agreement with the Q-cycle hypothesis. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 935:208-16. [PMID: 2843229 DOI: 10.1016/0005-2728(88)90217-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Stopped-flow experiments were performed to distinguish between two hypotheses, the Q-cycle and the SQ-cycle, each describing the pathway of electron transfer in the QH2:cytochrome c oxidoreductases. It was observed that, when mitochondrial membranes from the yeast Saccharomyces cerevisiae were poised at a low redox potential with appropriate amounts of sodium dithionite to completely reduce cytochrome b, the kinetics of oxidation of cytochrome b showed a lag period of maximally 100 ms. Under the same experimental conditions, the oxidation-reduction kinetics of cytochromes c + c1 showed transient behaviour. These results do not support the presence of a mobile species of semiquinone in the QH2:cytochrome c oxidoreductases, as envisaged in the SQ-cycle, but are consistent with a Q-cycle mechanism in which the two quinone-binding domains do not exchange electrons directly on the timescale of turnover of the enzyme.
Collapse
Affiliation(s)
- S de Vries
- Laboratory of Biochemistry, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
6
|
van Hoek AN, van Gaalen MC, de Vries S, Berden JA. Pre-steady-state reduction kinetics of QH2:cytochrome c oxidoreductase and the Q-pool: evidence for a special quinone not in rapid equilibrium with the Q-pool. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 892:152-61. [PMID: 3034326 DOI: 10.1016/0005-2728(87)90257-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The pre-steady-state kinetics of the reduction of the prosthetic groups of QH2:cytochrome c oxidoreductase in bovine heart submitochondrial particles were studied in relation to the kinetics of the Q-10 reduction, using duroquinol as substrate. The prosthetic groups, including semiquinone, were measured with EPR and low-temperature-diffuse reflectance spectroscopy, the samples being prepared with the rapid-freeze quench technique. For the determination of the redox state of ubiquinone in the pre-steady state the rapid chemical quench technique was used as an extension of the rapid-freeze quench technique, and Q-10 and QH2-10 were measured with reversed-phase HPLC after extraction with petroleum ether. Ubiquinone was reduced biphasically, 8% of total Q-10 (equal to 1 mol Q-10/mol cytochrome c1), being reduced within 5 ms, and the rest, the Q-pool, at a much lower rate. The initial rapid reduction of this special Q-10 was accompanied by rapid formation of Qi and rapid reduction of a large part of the cytochrome b-562. Both semiquinone formation and reduction of b-562 showed transient kinetics due to a contribution of the reaction pathway via centre o when the iron-sulphur cluster and cytochrome c1 were oxidised. The majority of the special quinol was located at centre i, probably bound, but also at centre o some bound quinol was formed. This was visible when antimycin was present, the antimycin-insensitive bound quinol being totally sensitive to myxothiazol. Myxothiazol alone accelerated the reduction of the Q-pool via centre i, but also the equilibration of cytochrome b-562 with the Q-pool. Antimycin drastically lowered the rate of reduction of the Q-pool and additionally seemed to block the rapid electron transfer from part of the Rieske iron-sulphur cluster to cytochrome c1. It is concluded that, during the pre-steady-state, cytochrome b-562 is not in equilibrium with the Q-pool and that the rate of equilibration is probably determined by the rate of dissociation of the special bound quinol from centre i.
Collapse
|
7
|
|
8
|
von Jagow G, Link TA, Ohnishi T. Organization and function of cytochrome b and ubiquinone in the cristae membrane of beef heart mitochondria. J Bioenerg Biomembr 1986; 18:157-79. [PMID: 2426249 DOI: 10.1007/bf00743462] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The arrangement and function of the redox centers of the mammalian bc1 complex is described on the basis of structural data derived from amino acid sequence studies and secondary structure predictions and on the basis of functional studies (i.e., EPR data, inhibitor studies, and kinetic experiments). Two ubiquinone reaction centers do exist--a QH2 oxidation center situated at the outer, cytosolic surface of the cristae membrane (Q0 center), and a Q reduction center (Qi center) situated more to the inner surface of the cristae membrane. The Q0 center is formed by the b-566 domain of cytochrome b, the FeS protein, and maybe an additional small subunit, whereas the Qi center is formed by the b-562 domain of cytochrome b and presumably the 13.4 kDa protein ("QP-C"). The "Q binding proteins" are proposed to be protein subunits of the Q reaction centers of various multiprotein complexes. The path of electron flow branches at the Q0 center, half of the electrons flowing via the high-potential cytochrome chain to oxygen and half of the electrons cycling back into the Q pool via the cytochrome b path connecting the two Q reaction centers. During oxidation of QH2, 2H+ are released to the cytosolic space and during reduction of Q, 2H+ are taken up from the matrix side, resulting in a net transport across the membrane of 2H+ per e- flown from QH2 to cytochrome c, the H+ being transported across the membrane as H (H+ + e-) by the mobile carrier Q. The authors correct their earlier view of cytochrome b functioning as a H+ pump, proposing that the redox-linked pK changes of the acidic groups of cytochrome b are involved in the protonation/deprotonation processes taking place during the reduction and oxidation of Q. The reviewers stress that cytochrome b is in equilibrium with the Q pool via the Qi center, but not via the Q0 center. Their view of the mechanisms taking place at the reductase is a Q cycle linked to a Q-pool where cytochrome b is acting as an electron pump.
Collapse
|
9
|
de Vries S. The pathway of electron transfer in the dimeric QH2: cytochrome c oxidoreductase. J Bioenerg Biomembr 1986; 18:195-224. [PMID: 3015896 DOI: 10.1007/bf00743464] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The experimental data currently available suggest that QH2:cytochrome c oxidoreductase functions according to a Q-cycle type of mechanism. The molecular weight of the enzyme in a natural or artificial phospholipid bilayer or in solution corresponds to that of a dimer. The pre-steady state kinetics of reduction of the prosthetic groups indicate that the enzyme is functionally dimeric. A double Q cycle is proposed, describing the pathway of electron transfer in the dimeric QH2:cytochrome c oxidoreductase. According to this scheme, the two monomeric halves of the enzyme act in a cooperative fashion to complete the catalytic cycle. It is proposed that high-potential cytochrome b-562 and low-potential cytochrome b-562 act cooperatively, viz. as a functional pair, in the antimycin-sensitive reduction of ubiquinone to ubiquinol.
Collapse
|
10
|
Beattie DS, Clejan L. Coenzyme Q analogues reconstitute electron transport and proton ejection but not the antimycin-induced "red shift" in mitochondria from coenzyme Q deficient mutants of the yeast Saccharomyces cerevisiae. Biochemistry 1986; 25:1395-402. [PMID: 3008830 DOI: 10.1021/bi00354a031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Mitochondria isolated from coenzyme Q deficient yeast cells had no detectable NADH:cytochrome c reductase or succinate:cytochrome c reductase activity but contained normal amounts of cytochromes b and c1 by spectral analysis. Addition of the exogenous coenzyme Q derivatives including Q2, Q6, and the decyl analogue (DB) restored the rate of antimycin- and myxothiazole-sensitive cytochrome c reductase with both substrates to that observed with reduced DBH2. Similarly, addition of these coenzyme Q analogues increased 2-3-fold the rate of cytochrome c reduction in mitochondria from wild-type cells, suggesting that the pool of coenzyme Q in the membrane is limiting for electron transport in the respiratory chain. Preincubation of mitochondria from the Q-deficient yeast cells with DBH2 at 25 degrees C restored electrogenic proton ejection, resulting in a H+/2e- ratio of 3.35 as compared to a ratio of 3.22 observed in mitochondria from the wild-type cell. Addition of succinate and either coenzyme Q6 or DB to mitochondria from the Q-deficient yeast cells resulted in the initial reduction of cytochrome b followed by a slow reduction of cytochrome c1 with a reoxidation of cytochrome b. The subsequent addition of antimycin resulted in the oxidant-induced extrareduction of cytochrome b and concomitant oxidation of cytochrome c1 without the "red" shift observed in the wild-type mitochondria. Similarly, addition of antimycin to dithionite-reduced mitochondria from the mutant cells did not result in a red shift in the absorption maximum of cytochrome b as was observed in the wild-type mitochondria in the presence or absence of exogenous coenzyme Q analogues.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
11
|
|
12
|
Is there sufficient experimental evidence to consider the mitochondrial cytochrome bc1 complex a proton pump? Probably no. J Bioenerg Biomembr 1986; 18:21-38. [PMID: 2422159 DOI: 10.1007/bf00743610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The electron flow through the cytochrome bc1 complex of the mitochondrial respiratory chain is accompanied by vectorial proton translocation, though the mechanism of the latter phenomenon has not yet been clarified. Several proposed hypotheses are briefly presented and discussed here. Recently, a number of papers have appeared claiming the existence of a proton pump in the enzyme mainly on the basis of the interaction of the complex with N,N'-dicyclohexylcarbodiimide. These data are reviewed here with the aim of showing their ability to fit multiple interpretations. This together with some other arguments leads to the conclusion that a proton pump in the mitochondrial bc1 complex has not yet been demonstrated.
Collapse
|
13
|
|
14
|
von Jagow G, Ohnishi T. The chromone inhibitor stigmatellin--binding to the ubiquinol oxidation center at the C-side of the mitochondrial membrane. FEBS Lett 1985; 185:311-5. [PMID: 2987042 DOI: 10.1016/0014-5793(85)80929-7] [Citation(s) in RCA: 139] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stigmatellin, a chromone inhibitor acting at the Q0 center of the bc1 complex, binds to the heme b-566 domain of cytochrome b as well as to the Fe2S2 protein. Its binding induces a shift of the alpha-band of heme b-566 to 568 nm. It does not influence the ligand field of the heme b-562 center. Concomitant with the red shift, stigmatellin gives rise to an alteration of the EPR line shape of the Fe2S2 cluster, namely linewidth narrowing and g value shifts at all 3 principal values. The midpoint redox potential of the Fe2S2 protein is shifted from 290 to 540 mV.
Collapse
|
15
|
Degli Esposti M, Rotilio G, Lenaz G. Effects of dibromothymoquinone on the structure and function of the mitochondrial bc1 complex. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 767:10-20. [PMID: 6091748 DOI: 10.1016/0005-2728(84)90074-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We have investigated in detail the effects of dibromothymoquinone (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone, DBMIB) on the ubiquinol-cytochrome c reductase (cytochrome bc1 complex) from bovine heart mitochondria. The inhibitory action of DBMIB on the steady-state activity of the bc1 complex is related to the specific binding of the quinone to the purified enzymatic complex. At concentrations higher than 10 mol per mol of the enzyme, DBMIB is able to stimulate an antimycin-insensitive reduction of cytochrome c catalyzed by the bc1 complex. In accordance with kinetic data showing a competition by endogenous ubiquinone in the inhibitory action, DBMIB can be considered as a product-like inhibitor of the ubiquinol-cytochrome c reductase activity. The site of specific binding of dibromothymoquinone in the bc1 complex enables it to interact with the iron-sulphur center of the enzyme, as indicated by changes induced in the EPR spectrum of the center. However, the inhibitor also directly interacts with cytochrome b, promoting a fast chemical oxidation of the reduced heme center. In spite of these effects, DBMIB has been found not to exert significant effects on the first turnover of the fully oxidized bc1 complex, as monitored by the rapid reduction of both cytochromes b and c1 by ubiquinol-1. In the presence of antimycin, only a stimulation of cytochrome c1 reduction, in parallel to an enhanced cytochrome b reoxidation, is observed. Moreover, DBMIB does not affect the oxidant-induced extra cytochrome b reduction in the presence of antimycin. On the basis of the evidences suggesting a competition with the endogenous ubiquinone in the redox cycle of the bc1 complex, a model is proposed for the mechanism of DBMIB inhibition. Such model can also explain at the molecular level the redox bypass induced by dibromothymoquinone in the whole respiratory chain (Degli Esposti, M., Rugolo, M. and Lenaz, G. (1983) FEBS Lett. 156, 15-19).
Collapse
|
16
|
Zhu QS, Van der Wal HN, Van Grondelle R, Berden JA. Flash-induced electron transfer through mitochondrial QH2: cytochrome c oxidoreductase in the presence of bacterial reaction centres and cytochrome c. Analysis of subsequent processes and effect of inhibitors. BIOCHIMICA ET BIOPHYSICA ACTA 1984; 765:48-57. [PMID: 6324866 DOI: 10.1016/0005-2728(84)90156-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In a system containing reaction centres isolated from Rhodopseudomonas sphaeroides mutant R26, and variable amounts of horse-heart cytochrome c and bovine-heart mitochondrial QH2: cytochrome c oxidoreductase in a medium containing 2 mM ascorbate and 0.1 microM phenazine methosulphate, electron transfer was induced by a single flash. Three distinct phases of electron transfer can be distinguished: the first event is the oxidation of cytochrome c, and this is followed by an equilibration between cytochrome c, cytochrome c1 and the Rieske [2Fe-2S] cluster. The actual rates of these processes depend on the concentrations of cytochrome c and the reductase. The slower third phase is the oxidation of ubiquinol, which can follow two pathways: one sensitive to antimycin and one sensitive to myxothiazole. The antimycin-sensitive pathway (t1/2 approximately equal to 10 ms) is an equilibration between the Q/QH2 couple and cytochrome b, but may also include a direct reduction of cytochrome b by the QB of the reaction centres. The myxothiazole-sensitive pathway is a coupled reduction of cytochrome b and the Rieske [2Fe-2S] cluster which rapidly equilibrates with cytochromes c1 and c. Both pathways are sensitive to 7-(n-heptadecyl)mercapto-6-hydroxy-5,8-quinoline quinone, but with different affinities. In the absence of inhibitors the initial reduction of cytochrome b (via both pathways) is followed by a net oxidation which is the resultant of a continuing reduction (together with the reduction of the Rieske [2Fe-2S] cluster) and an oxidation (via the antimycin-sensitive site) by quinone. The results are discussed in the light of linear and cyclic models proposed to explain electron transfer between cytochromes b and c. It is concluded that only the Q-cycle model fits the present experimental data.
Collapse
|
17
|
|
18
|
Zhu QS, Van der Wal HN, Van Grondelle R, Berden JA. Kinetics of flash-induced electron transfer between bacterial reaction centres, mitochondrial ubiquinol:cytochrome c oxidoreductase and cytochrome c. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 725:121-30. [PMID: 6313049 DOI: 10.1016/0005-2728(83)90231-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ascorbate-reduced horse heart cytochrome c reduces photo-oxidized bacterial reaction centres with a second-order rate constant of (5-8) X 10(8) M-1 X s-1 at an ionic strength of 50 mM. In the absence of cytochrome c, the cytochrome c1 in the ubiquinol:cytochrome c oxidoreductase is oxidized relatively slowly (k = 3.3 X 10(5) M-1 X s-1). Ferrocytochrome c binds specifically to ascorbate-reduced reductase, with a Kd of 0.6 microM, and only the free cytochrome c molecules are involved in the rapid reduction of photo-oxidized reaction centres. The electron transfer between ferricytochrome c and ferrocytochrome c1 of the reductase is rapid, with a second-order rate constant of 2.1 X 10(8) M-1 X s-1 at an ionic strength of 50 mM. The rate of electron transfer from the Rieske iron-sulphur cluster to cytochrome c1 is even more rapid. The cytochrome b of the ubiquinol:cytochrome c oxidoreductase can be reduced by electrons from the reaction centres through two pathways: one is sensitive to antimycin and the other to myxothiazol. The amount of cytochrome b reduced in the absence of antimycin is dependent on the redox potential of the system, but in no case tested did it exceed 25% of the amount of photo-oxidized reaction centres.
Collapse
|
19
|
van Der Wal H, van Grondelle R. Flash-induced electron transport in b- and c-type cytochromes in Rhodospirillum rubrum. Evidence for a Q-cycle. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90228-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
A myxothiazol-sensitive Q-binding protein isolated from Chromatium vinosum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1983. [DOI: 10.1016/0005-2728(83)90137-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
|
22
|
Degli Esposti M, Rugolo M, Lenaz G. Inhibition of the mitochondrial bc1 complex by dibromothymoquinone. FEBS Lett 1983; 156:15-9. [PMID: 6303849 DOI: 10.1016/0014-5793(83)80238-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have studied the effects of dibromothymoquinone (DBMIB) in various redox activities of the succinate-cytochrome c span of the mitochondrial respiratory chain. At concentrations higher than 50 mol/mol of cytochrome c1 the inhibitor produces a bypass of electron transfer on the substrate side of the bc1 complex, because of its autooxidation capability. This induces an artifactual overestimation of the real inhibition titer of the redox activity of this enzyme, which has been found to be 3-6 mol/mol of cytochrome c1 by following the ubiquinol-cytochrome c reductase activity. This action is reversed by addition of excess of sulphydryl compounds like cysteine.
Collapse
|
23
|
De Vries S, Albracht SP, Berden JA, Marres CA, Slater EC. The effect of pH, ubiquinone depletion and myxothiazol on the reduction kinetics of the prosthetic groups of ubiquinol:cytochrome c oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 723:91-103. [PMID: 6299337 DOI: 10.1016/0005-2728(83)90013-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
(1) The kinetics of the reduction by duroquinol of the prosthetic groups of QH2:cytochrome c oxidoreductase and of the formation of ubisemiquinone have been studied using a combination of the freeze-quench technique, low-temperature diffuse-reflectance spectroscopy, EPR and stopped flow. (2) The formation of the antimycin-sensitive ubisemiquinone anion parallels the reduction of both high-potential and low-potential cytochrome b-562. (3) The rates of reduction of both the [2Fe-2S] clusters and cytochromes (c + c1) are pH dependent. There is, however, a pH-dependent discrepancy between their rate of reduction, which can be correlated with the difference in pH dependencies of their midpoint potentials. (4) Lowering the pH or the Q content results in a slower reduction of part of the [2Fe-2S] clusters. It is suggested that one cluster is reduced by a quinol/semiquinone couple and the other by a semiquinone/quinone couple. (5) Myxothiazol inhibits the reduction of the [2Fe-2S] clusters, cytochrome c1 and high-potential cytochrome b-562. (6) The results are consistent with a Q-cycle model describing the pathway of electrons through a dimeric QH2:cytochrome c oxidoreductase.
Collapse
|