Blankenship RE. Electron transport in green photosynthetic bacteria.
PHOTOSYNTHESIS RESEARCH 1985;
6:317-333. [PMID:
24442952 DOI:
10.1007/bf00054106]
[Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/1984] [Accepted: 11/27/1984] [Indexed: 06/03/2023]
Abstract
Green bacteria make up two of the four families of anoxygenic photosynthetic prokaryotes. The two families have similar pigment compositions and membrane fine structure, and both contain a specialized antenna structure known as a chlorosome. The primary photochemistry and electron transport pathways of the two groups are, however, quite distinct. The anaerobic green bacteria (Chlorobiaceae) contain low-potential iron-sulfur proteins as early electron acceptors and can directly reduce NAD(+) in a manner reminiscent of Photosystem I of oxygenic organisms. The facultatively aerobic green bacteria (Chloroflexaceae) contain quinone-type acceptors and have an overall pattern of electron transport very similar to that found in purple bacteria. Many aspects of energy storage in green bacteria, especially photophosphorylation and the role of cytochrome b/c complexes in electron transport, remain poorly understood.
Collapse