1
|
Chen J, Wei J, Ma C, Yang Z, Li Z, Yang X, Wang M, Zhang H, Hu J, Zhang C. Photosynthetic bacteria-based technology is a potential alternative to meet sustainable wastewater treatment requirement? ENVIRONMENT INTERNATIONAL 2020; 137:105417. [PMID: 32120141 DOI: 10.1016/j.envint.2019.105417] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 12/11/2019] [Indexed: 05/23/2023]
Abstract
A paradigm shift is underway in wastewater treatment from pollution removal to resource or energy recovery. However, conventional activated sludge (CAS) as the core technology of wastewater treatment is confronted with severe challenges on high energy consumption, sludge disposal and inevitable greenhouse gas emission, which are posing a serious impact on the current wastewater industry. It is urgent to find new alternative methods to remedy these defects. Photosynthetic bacteria (PSB) have flexible metabolic modes and high tolerance, which enhance the removal of nutrients, heavy metals and organic contaminants efficiency in different wastewater. The unique phototrophic growth of PSB breaks the restriction of nutrient metabolism in the CAS system. Recent studies have shown that PSB-based technologies can not only achieve the recovery of nutrient and energy, but also improve the degradation efficiency of refractory substances. If the application parameters can be determined, there will be great prospects and economic effects. This review summarizes the research breakthroughs and application promotion of PSB-based wastewater treatment technology in recent years. Comparing discussed the superiority and inferiority from the perspective of application range, performance differences and recovery possibility. Pathways involved in the nutrient substance and the corresponding influencing parameters are also described in detail. The mode of PSB biodegradation processes presented a promising alternative for new wastewater treatment scheme. In the future, more mechanical and model studies, deterministic operating parameters, revolutionary process design is need for large-scale industrial promotion of PSB-based wastewater treatment.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jingjing Wei
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Mingsheng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Huaqing Zhang
- Qinglin Environmental Protection Co. Ltd., Ningbo 315000, China
| | - Jiawei Hu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
2
|
Lavergne J, Verméglio A, Joliot P. Functional Coupling Between Reaction Centers and Cytochrome bc 1 Complexes. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Kojadinovic M, Laugraud A, Vuillet L, Fardoux J, Hannibal L, Adriano JM, Bouyer P, Giraud E, Verméglio A. Dual role for a bacteriophytochrome in the bioenergetic control of Rhodopsdeudomonas palustris: Enhancement of photosystem synthesis and limitation of respiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:163-72. [DOI: 10.1016/j.bbabio.2007.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/30/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
4
|
Boichenko VA, Wang JM, Antón J, Lanyi JK, Balashov SP. Functions of carotenoids in xanthorhodopsin and archaerhodopsin, from action spectra of photoinhibition of cell respiration. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:1649-56. [PMID: 17020745 PMCID: PMC1761948 DOI: 10.1016/j.bbabio.2006.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/22/2006] [Accepted: 08/23/2006] [Indexed: 11/16/2022]
Abstract
The recent discovery of a carotenoid light-harvesting antenna in xanthorhodopsin, a retinal-based proton pump in Salinibacter ruber, made use of photoinhibition of respiration in whole cells to obtain action spectra [Balashov et al. Science 309, (2005) 2061-2064]. Here we provide further details of this phenomenon, and compare action spectra in three different systems where carotenoids have different functions or efficiencies of light-harvesting. The kinetics of light-induced inhibition of respiration in Salinibacter ruber was determined with single short flashes, and the photochemical cross section of the photoreaction was estimated. These measurements confirm that the xanthorhodopsin complex includes no more than a few, and most likely only one, carotenoid molecule, which is far less than the core complex antenna of photosynthetic bacteria. Although the total cross-section of light absorption in the purple bacterium Rhodospirillum rubrum greatly exceeds that in Salinibacter, the cross-sections are roughly equivalent in the shared wavelength range. We show further that despite interaction of bacterioruberin with archaerhodopsin, another retinal-based proton pump, there is no significant energy transfer from this carotenoid. This emphasizes the uniqueness of the salinixanthin-retinal interaction in xanthorhodopsin, and indicates that bacterioruberin in Halorubrum species has a structural or photoprotective rather than energetic role.
Collapse
Affiliation(s)
- Vladimir A Boichenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | | | | |
Collapse
|
5
|
Verméglio A, Joliot P. Supramolecular organisation of the photosynthetic chain in anoxygenic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:60-4. [PMID: 12206892 DOI: 10.1016/s0005-2728(02)00255-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This minireview summarizes our present view of the supramolecular organization of the photosynthetic apparatus of Rhodobacter sphaeroides and Rhodobacter capsulatus. These two species present a close association between two reaction centers (RCs), one cytochrome (cyt) bc(1) and one cyt c. In R. sphaeroides, the RCs are only partially surrounded by LH1 complexes. This open ring of LH1 complexes is required for an efficient photoinduced cyclic electron transfer only under conditions where the quinone pool totally reduced. When the quinone pool is partially oxidized, a closed ring of LH1 complexes around the RCs does not impair the exchange of quinone molecules between the RC and the cyt bc(1) complex. To explain the efficient photochemistry of the various species which possess a RC surrounded by a closed ring of LH, it is proposed that their quinone pool is partially oxidized even under anaerobic condition.
Collapse
Affiliation(s)
- André Verméglio
- CEA/Cadarache DEVM-Laboratoire de Bioénergétique Cellulaire, UMR 163-CNRS-CEA, Univ-Méditerranée CEA1000, Saint Paul lez Durance, France.
| | | |
Collapse
|
6
|
Shinkarev VP. The General Kinetic Model of Electron Transfer in Photosynthetic Reaction Centers Activated by Multiple Flashes. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb09474.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Shinkarev VP. The General Kinetic Model of Electron Transfer in Photosynthetic Reaction Centers Activated by Multiple Flashes. Photochem Photobiol 1998. [DOI: 10.1111/j.1751-1097.1998.tb09113.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Fork DC, Herbert SK. Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. PHOTOSYNTHESIS RESEARCH 1993; 36:149-168. [PMID: 24318920 DOI: 10.1007/bf00033035] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/1992] [Accepted: 02/11/1993] [Indexed: 06/02/2023]
Abstract
Recently, a number of techniques, some of them relatively new and many often used in combination, have given a clearer picture of the dynamic role of electron transport in Photosystem I of photosynthesis and of coupled cyclic photophosphorylation. For example, the photoacoustic technique has detected cyclic electron transport in vivo in all the major algal groups and in leaves of higher plants. Spectroscopic measurements of the Photosystem I reaction center and of the changes in light scattering associated with thylakoid membrane energization also indicate that cyclic photophosphorylation occurs in living plants and cyanobacteria, particularly under stressful conditions.In cyanobacteria, the path of cyclic electron transport has recently been proposed to include an NAD(P)H dehydrogenase, a complex that may also participate in respiratory electron transport. Photosynthesis and respiration may share common electron carriers in eukaryotes also. Chlororespiration, the uptake of O2 in the dark by chloroplasts, is inhibited by excitation of Photosystem I, which diverts electrons away from the chlororespiratory chain into the photosynthetic electron transport chain. Chlororespiration in N-starved Chlamydomonas increases ten fold over that of the control, perhaps because carbohydrates and NAD(P)H are oxidized and ATP produced by this process.The regulation of energy distribution to the photosystems and of cyclic and non-cyclic phosphorylation via state 1 to state 2 transitions may involve the cytochrome b 6-f complex. An increased demand for ATP lowers the transthylakoid pH gradient, activates the b 6-f complex, stimulates phosphorylation of the light-harvesting chlorophyll-protein complex of Photosystem II and decreases energy input to Photosystem II upon induction of state 2. The resulting increase in the absorption by Photosystem I favors cyclic electron flow and ATP production over linear electron flow to NADP and 'poises' the system by slowing down the flow of electrons originating in Photosystem II.Cyclic electron transport may function to prevent photoinhibition to the photosynthetic apparatus as well as to provide ATP. Thus, under high light intensities where CO2 can limit photosynthesis, especially when stomates are closed as a result of water stress, the proton gradient established by coupled cyclic electron transport can prevent over-reduction of the electron transport system by increasing thermal de-excitation in Photosystem II (Weis and Berry 1987). Increased cyclic photophosphorylation may also serve to drive ion uptake in nutrient-deprived cells or ion export in salt-stressed cells.There is evidence in some plants for a specialization of Photosystem I. For example, in the red alga Porphyra about one third of the total Photosystem I units are engaged in linear electron transfer from Photosystem II and the remaining two thirds of the Photosystem I units are specialized for cyclic electron flow. Other organisms show evidence of similar specialization.Improved understanding of the biological role of cyclic photophosphorylation will depend on experiments made on living cells and measurements of cyclic photophosphorylation in vivo.
Collapse
Affiliation(s)
- D C Fork
- Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, 94305-1297, Stanford, CA, USA
| | | |
Collapse
|
9
|
Ravenel J, Peltier G. Inhibition of chlororespiration by myxothiazol and antimycin A in Chlamydomonas reinhardtii. PHOTOSYNTHESIS RESEARCH 1991; 28:141-148. [PMID: 24414973 DOI: 10.1007/bf00054127] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/1991] [Accepted: 05/15/1991] [Indexed: 06/03/2023]
Abstract
Myxothiazol and antimycin A are shown to suppress the oxygen transient previously attributed to the flash-induced inhibition of chlororespiration in Chlamydomonas reinhardtii (Peltier et al. 1987, Biochim Biophys Acta 893: 83-90). However, these two compounds do not affect the photosynthetic electron transport chain as inferred by the insensitivity of the CO2-dependent photosynthetic O2 evolution and of the flash-induced electrochromic effect. Chlorophyll fluorescence induction measurements carried out in dark-adapted cells of a mutant of Chlamydomonas lacking photosystem 1, show that myxothiazol and antimycin A significantly increase the redox state of the photosystem 2 acceptors. We conclude from these results that chlororespiration is inhibited by myxothiazol and antimycin A and that the site of inhibition is located on the dark oxidation pathway of the plastoquinone pool. This inhibition is interpreted through the involvement of a myxothiazol and antimycin A sensitive cytochrome in the chlororespiratory chain.
Collapse
Affiliation(s)
- J Ravenel
- Département de Physiologie Végétale et Ecosystèmes, Centre d'Etudes de Cadarache, 13108, Saint-Paul-lez-Durance, France
| | | |
Collapse
|
10
|
Zannoni D, Moore AL. Measurement of the redox state of the ubiquinone pool in Rhodobacter capsulatus membrane fragments. FEBS Lett 1990; 271:123-7. [PMID: 2171997 DOI: 10.1016/0014-5793(90)80387-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The dependence of the respiratory rate on the redox poise of the quinone pool was investigated in wild type and mutant membranes of Rhodobacter capsulatus. A linear relationship has been found between these two parameters only when succinate was oxidized by the bc1 complex. Conversely, a marked nonlinear relationship was observed between the Q-pool reduction level and the respiratory rate when O2 uptake occurred via the alternative oxidase. In addition, it was found that this latter pathway was not engaged until Q-pool reduction level reached approximately 25%. These results are discussed within the framework of a homogeneous pool regulating both photosynthetic and respiratory fluxes.
Collapse
Affiliation(s)
- D Zannoni
- Department of Biology, University of Bologna, Italy
| | | |
Collapse
|
11
|
Abstract
The cytochrome bc1 complex is the most widely occurring electron transfer complex capable of energy transduction. Cytochrome bc1 complexes are found in the plasma membranes of phylogenetically diverse photosynthetic and respiring bacteria, and in the inner mitochondrial membrane of all eucaryotic cells. In all of these species the bc1 complex transfers electrons from a low-potential quinol to a higher-potential c-type cytochrome and links this electron transfer to proton translocation. Most bacteria also possess alternative pathways of quinol oxidation capable of circumventing the bc1 complex, but these pathways generally lack the energy-transducing, protontranslocating activity of the bc1 complex. All cytochrome bc1 complexes contain three electron transfer proteins which contain four redox prosthetic groups. These are cytochrome b, which contains two b heme groups that differ in their optical and thermodynamic properties; cytochrome c1, which contains a covalently bound c-type heme; and a 2Fe-2S iron-sulfur protein. The mechanism which links proton translocation to electron transfer through these proteins is the proton motive Q cycle, and this mechanism appears to be universal to all bc1 complexes. Experimentation is currently focused on understanding selected structure-function relationships prerequisite for these redox proteins to participate in the Q-cycle mechanism. The cytochrome bc1 complexes of mitochondria differ from those of bacteria, in that the former contain six to eight supernumerary polypeptides, in addition to the three redox proteins common to bacteria and mitochondria. These extra polypeptides are encoded in the nucleus and do not contain redox prosthetic groups. The functions of the supernumerary polypeptides of the mitochondrial bc1 complexes are generally not known and are being actively explored by genetically manipulating these proteins in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- B L Trumpower
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03756
| |
Collapse
|
12
|
Interaction of photosynthesis and respiration in Rhodospirillaceae: evidence for two functionally distinct b-c1 complex fractions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80434-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Peltier G, Ravenel J, Verméglio A. Inhibition of a respiratory activity by short saturating flashes in Chlamydomonas: Evidence for a chlororespiration. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90151-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Richaud P, Marrs B, Verméglio A. Two modes of interaction between photosynthetic and respiratory electron chains in whole cells of Rhodopseudomonas capsulata. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90180-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
|
16
|
Snozzi M, Crofts AR. Kinetics of the c-cytochromes in chromatophores from Rhodopseudomonas sphaeroides as a function of the concentration of cytochrome c2. Influence of this concentration on the oscillation of the secondary acceptor of the reaction centers QB. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 809:260-70. [PMID: 2994721 DOI: 10.1016/0005-2728(85)90069-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The oxidation kinetics of Cyt c1 and c2 have been measured in normal chromatophores and in chromatophores fused with liposomes in order to increase the internal volume. The kinetics of Cyt c1 oxidation were found to be dependent on Cyt c2 concentration. The initial rate of Cyt c1 oxidation decreased after fusion by a factor of about two, indicating a process dependent on diffusion. The results do not allow a clear distinction between a diffusion of Cyt c2 along the inner membrane surface or through the inner volume of the vesicle; two- and three-dimensional models are discussed. In contrast to Cyt c1, the kinetics of oxidation of Cyt c2 were not influenced by changes in concentration. It is concluded that reduced Cyt c2 is preferentially bound to the reaction centers. A binary pattern as a function of flash number from the dark-adapted state was measured in the turn-over of the two-electron gate of the reaction center. In chromatophores with more than 0.5 cytochrome c2 molecules per reaction center, this binary pattern titrated out with a midpoint around 340 mV on reduction of the suspension. In experiments with chromatophores with a low Cyt c2 content, or with spheroplast-derived vesicles which had lost Cyt c2, the binary oscillation in the two-electron gate could be observed at much lower potentials. The results suggest that the binding of reduced cytochrome c2 modifies the behavior of the two-electron gate. A model in which reaction center dimers are stabilized by Cyt c2 is proposed to explain the effect.
Collapse
|
17
|
Vermeglio A, Joliot P. Light-induced absorption changes in intact cells of Rhodopseudomonas Sphaeroides. Evidence for interaction between photosynthetic and respiratory electron transfer chains. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1984. [DOI: 10.1016/0005-2728(84)90031-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|