1
|
Buchert F, Forreiter C. Singlet oxygen inhibits ATPase and proton translocation activity of the thylakoid ATP synthase CF1CFo. FEBS Lett 2010; 584:147-52. [PMID: 19925794 DOI: 10.1016/j.febslet.2009.11.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/30/2009] [Accepted: 11/12/2009] [Indexed: 11/26/2022]
Abstract
Singlet oxygen ((1)O(2)) produced in plants during photosynthesis has a strong damaging effect not only on both photosystems but also on the whole photosynthetic machinery. This is also applicable for the adenosine triphosphate (ATP) synthase. Here we describe the impact of (1)O(2) generated by the photosensitizer Rose Bengal on the ATP hydrolysis and ATP-driven proton translocation activity of CF1CFo. Both activities were reduced dramatically within 1min of exposure. Interestingly, it is shown that oxidized thylakoid ATP synthase is more susceptible to (1)O(2) than CF1CFo in its reduced state, a new insight on the mechanism of (1)O(2) interaction with the gamma subunit.
Collapse
Affiliation(s)
- Felix Buchert
- Pflanzenphysiologie, Justus-Liebig Universität, Zeughaus, Giessen, Germany
| | | |
Collapse
|
2
|
McCallum JR, McCarty RE. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:974-9. [PMID: 17559799 DOI: 10.1016/j.bbabio.2007.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/02/2007] [Accepted: 04/23/2007] [Indexed: 11/21/2022]
Abstract
Electron transport, the proton gradient and ATP synthesis were determined in thylakoids that had been briefly exposed to a low concentration of trypsin during illumination. This treatment cleaves the gamma subunit of the ATP synthase into two large fragments that remain associated with the enzyme. Higher rates of electron transport are required to generate a given value of the proton gradient in the trypsin-treated membranes than in control membranes, indicating that the treated membranes are proton leaky. Since venturicidin restores electron transport and the proton gradient to control levels, the proton leak is through the ATP synthase. Remarkably, the synthesis of ATP by the trypsin-treated membranes at saturating light intensities is only slightly inhibited even though the proton gradient is significantly lower in the treated thylakoids. ATP synthesis and the proton gradient were determined as a function of light intensity in control and trypsin-treated thylakoids. The trypsin-treated membranes synthesized ATP at lower values of the proton gradient than the control membranes. Cleavage of the gamma subunit abrogates inhibition of the activity of the chloroplast ATP synthase by the epsilon subunit. Our results suggest that overcoming inhibition by the epsilon subunit costs energy.
Collapse
Affiliation(s)
- Jeremy R McCallum
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
3
|
|
4
|
|
5
|
Schultz BE, Chan SI. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:23-65. [PMID: 11340051 DOI: 10.1146/annurev.biophys.30.1.23] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Enzymes of the mitochondrial respiratory chain serve as proton pumps, using the energy made available from electron transfer reactions to transport protons across the inner mitochondrial membrane and create an electrochemical gradient used for the production of ATP. The ATP synthase enzyme is reversible and can also serve as a proton pump by coupling ATP hydrolysis to proton translocation. Each of the respiratory enzymes uses a different strategy for performing proton pumping. In this work, the strategies are described and the structural bases for the action of these proteins are discussed in light of recent crystal structures of several respiratory enzymes. The mechanisms and efficiency of proton translocation are also analyzed in terms of the thermodynamics of the substrate transformations catalyzed by these enzymes.
Collapse
Affiliation(s)
- B E Schultz
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
6
|
Joët T, Cournac L, Horvath EM, Medgyesy P, Peltier G. Increased sensitivity of photosynthesis to antimycin A induced by inactivation of the chloroplast ndhB gene. Evidence for a participation of the NADH-dehydrogenase complex to cyclic electron flow around photosystem I. PLANT PHYSIOLOGY 2001; 125:1919-29. [PMID: 11299371 PMCID: PMC88847 DOI: 10.1104/pp.125.4.1919] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2000] [Revised: 10/05/2000] [Accepted: 12/08/2000] [Indexed: 05/18/2023]
Abstract
Tobacco (Nicotiana tabacum var Petit Havana) ndhB-inactivated mutants (ndhB-) obtained by plastid transformation (E.M. Horvath, S.O. Peter, T. Joët, D. Rumeau, L. Cournac, G.V. Horvath, T.A. Kavanagh, C. Schäfer, G. Peltier, P. MedgyesyHorvath [2000] Plant Physiol 123: 1337-1350) were used to study the role of the NADH-dehydrogenase complex (NDH) during photosynthesis and particularly the involvement of this complex in cyclic electron flow around photosystem I (PSI). Photosynthetic activity was determined on leaf discs by measuring CO2 exchange and chlorophyll fluorescence quenchings during a dark-to-light transition. In the absence of treatment, both non-photochemical and photochemical fluorescence quenchings were similar in ndhB- and wild type (WT). When leaf discs were treated with 5 microM antimycin A, an inhibitor of cyclic electron flow around PSI, both quenchings were strongly affected. At steady state, maximum photosynthetic electron transport activity was inhibited by 20% in WT and by 50% in ndhB-. Under non-photorespiratory conditions (2% O2, 2,500 microL x L(-1) CO2), antimycin A had no effect on photosynthetic activity of WT, whereas a 30% inhibition was observed both on quantum yield of photosynthesis assayed by chlorophyll fluorescence and on CO2 assimilation in ndhB-. The effect of antimycin A on ndhB- could not be mimicked by myxothiazol, an inhibitor of the mitochondrial cytochrome bc1 complex, therefore showing that it is not related to an inhibition of the mitochondrial electron transport chain but rather to an inhibition of cyclic electron flow around PSI. We conclude to the existence of two different pathways of cyclic electron flow operating around PSI in higher plant chloroplasts. One of these pathways, sensitive to antimycin A, probably involves ferredoxin plastoquinone reductase, whereas the other involves the NDH complex. The absence of visible phenotype in ndhB- plants under normal conditions is explained by the complement of these two pathways in the supply of extra-ATP for photosynthesis.
Collapse
Affiliation(s)
- T Joët
- Commissariat à l'Energie Atomique, Cadarache, Laboratoire d'Ecophysiologie de la Photosynthèse, Département d'Ecophysiologie Végétale et Microbiologie, Bât. 161, F-13108 Saint-Paul-lez-Durance, France
| | | | | | | | | |
Collapse
|
7
|
Evron Y, McCarty RE. Simultaneous measurement of deltapH and electron transport in chloroplast thylakoids by 9-aminoacridine fluorescence. PLANT PHYSIOLOGY 2000; 124:407-14. [PMID: 10982453 PMCID: PMC59153 DOI: 10.1104/pp.124.1.407] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2000] [Accepted: 05/29/2000] [Indexed: 05/22/2023]
Abstract
Electron transport and the electrochemical proton gradient across the thylakoid membrane are two fundamental parameters of photosynthesis. A combination of the electron acceptor, ferricyanide and the DeltapH indicator, 9-aminoacridine, was used to measure simultaneously electron transport rates and DeltapH solely by changes in the fluorescence of 9-aminoacridine. This method yields values for the rate of electron transport that are comparable with those obtained by established methods. Using this method a relationship between the rate of electron transport and DeltapH at various uncoupler concentrations or light intensities was obtained. In addition, the method was used to study the effect of reducing the disulfide bridge in the gamma-subunit of the chloroplast ATP synthase on the relation of electron transport to DeltapH. When the ATP synthase is reduced and alkylated, the threshold DeltapH at which the ATP synthase becomes leaky to protons is lower compared with the oxidized enzyme. Proton flow through the enzyme at a lower DeltapH may be a key step in initiation of ATP synthesis in the reduced enzyme and may be the way by which reduction of the disulfide bridge in the gamma-subunit enables high rates of ATP synthesis at low DeltapH values.
Collapse
Affiliation(s)
- Y Evron
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
8
|
Noctor G, Foyer CH. Homeostasis of adenylate status during photosynthesis in a fluctuating environment. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51 Spec No:347-56. [PMID: 10938842 DOI: 10.1093/jexbot/51.suppl_1.347] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This review describes and assesses pathways likely to influence and stabilize the ATP/reductant balance during whole cell photosynthesis. The sole reductive step of the Calvin cycle occurs during the conversion of 3-phosphoglycerate to triose phosphate. Photophosphorylation linked to this reaction can undoubtedly supply most of the ATP required by the Calvin cycle and other chloroplastic reactions. Small but crucial contributions must come from several other pathways, some of which involve co-operation between the chloroplast and the rest of the cell. Extrachloroplastic compartments can contribute to chloroplastic ATP requirements by supplying ATP directly or, probably more significantly, by accepting reducing equivalents and so supporting ATP synthesis within the chloroplast.
Collapse
Affiliation(s)
- G Noctor
- Department of Biochemistry and Physiology, IACR-Rothamsted, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
9
|
Berry S, Rumberg B. H+/ATP coupling ratio at the unmodulated CF0CF1-ATP synthase determined by proton flux measurements. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00031-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Van Walraven HS, Strotmann H, Schwarz O, Rumberg B. The H+/ATP coupling ratio of the ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains is four. FEBS Lett 1996; 379:309-13. [PMID: 8603713 DOI: 10.1016/0014-5793(95)01536-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper the authors emphasise that the proton translocating ATP synthase from thiol-modulated chloroplasts and two cyanobacterial strains has a coupling ratio of 4 protons per ATP synthesised or hydrolysed. This ratio is determined by several thermodynamic studies at equilibrium between phosphate potential (Delta Gp) and proton gradient (Delta(mu)H+), and is confirmed by measurement of proton flux during ATP hydrolysis. Ratios lower than 4 H+/ATP that have been published in the past have predominantly been determined with the oxidised chloroplast enzyme. Errors in these measurements will be discussed.
Collapse
Affiliation(s)
- H S Van Walraven
- Department of Physiology and Biochemistry of Plants, Institute for Molecular Biological Sciences (IMBW), BioCentrum Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
11
|
Bendall DS, Manasse RS. Cyclic photophosphorylation and electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1995. [DOI: 10.1016/0005-2728(94)00195-b] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Sigalat C, Haraux F, de Kouchkovsky Y. Flow-force relationships in lettuce thylakoids. 1. Strict control of electron flow by internal pH. Biochemistry 1993; 32:10193-200. [PMID: 8399146 DOI: 10.1021/bi00089a040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The regulation by the proton gradient of the electron flow from water to ferricyanide was investigated in thylakoids extracted from lettuce leaves. When the transmembrane proton current was varied by an uncoupler or by the ATP synthase activity, a unique relationship was found between the rate of ferricyanide reduction and the proton gradient, restricted here to its delta pH component. This behavior was conserved in CF1-depleted thylakoids where the passive proton flow was varied by the concentration of an Fo inhibitor or by the concentration of an uncoupler after 100% inhibition of Fo. This shows that under our experimental conditions no direct proton transfer exists in steady state between the site of regulation of the redox chain and the ATPase. Studies at two different pH's indicate that the internal pH, and not the transmembrane pH difference, controls the electron transfer between PS2 and PS1. Modeling the data suggests that a single deprotonation step is kinetically limiting.
Collapse
|
13
|
Apostolova EL, Ivanov AG. Effects of monofunctional sulfhydryl reagents on the proton permeability of pea thylakoid membranes. J Electroanal Chem (Lausanne) 1991. [DOI: 10.1016/0022-0728(91)85569-b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Evron Y, Avron M. Characterization of an alkaline pH-dependent proton ‘slip’ in the ATP synthase of lettuce thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90131-m] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Sigalat C, de Kouchkovsky Y, Haraux F, de Kouchkovsky F. Shift from localized to delocalized protonic energy coupling in thylakoids by permeant amines. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90095-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Beard WA, Chiang G, Dilley RA. ATP formation onset lag and post-illumination phosphorylation initiated with single-turnover flashes. II. Two modes of post-illumination phosphorylation driven by either delocalized or localized proton gradient coupling. J Bioenerg Biomembr 1988; 20:107-28. [PMID: 3346205 DOI: 10.1007/bf00762140] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two modes of chloroplast membrane post-illumination phosphorylation were detected, using the luciferin-luciferase ATP assay, one of which was not influenced by added permeable buffer (pyridine). That finding provides a powerful new tool for studying proton-membrane interactions during energy coupling. When ADP and Pi were added to the thylakoid suspension after a train of flashes [similar to the traditional post-illumination phosphorylation protocol (termed PIP- here)], the post-illumination ATP yield was influenced by pyridine as expected, in a manner consistent with the ATP formation, in part, being driven by protons present in the bulk inner aqueous phase, i.e., through a delocalized protonmotive force. However, when ADP and Pi were present during the flash train (referred to as PIP+), and ATP formation occurred during the flash train, the post-illumination ATP yield was unaffected by the presence of pyridine, consistent with the hypothesis that localized proton gradients were driving ATP formation. To test this hypothesis further, the pH and flash number dependence of the PIP- and PIP+ ATP yields were measured, the results being consistent with the above hypothesis of dual compartment origins of protons driving post-illumination ATP formation. Measuring proton accumulation during the attainment of the threshold energization level when no delta psi component was allowed to form (+ valinomycin, K+), and testing for pyridine effects on the proton uptake, reveals that the onset of ATP formation requires the accumulation of about 60 nmol H+ (mg Chl)-1. Between that level and about 110-150 nmol H+ (mg Chl)-1, the accumulation appears to be absorbed by localized-domain membrane buffering groups, the protons of which do not equilibrate readily with the inner aqueous (lumen) phase. Post-illumination phosphorylation driven by the dissipation of the domain protons was not affected by pyridine (present in the lumen), even though the effective pH in the domains must have been well into the buffering range of the pyridine. That finding provides additional insight into the localized domains, namely that protons can be absorbed by endogenous low pK buffering groups, and released at a low enough pH (less than or equal to 5.7 when the external pH was 8, less than or equal to 4.7 at pH 7 external) to drive significant ATP formation when no further proton production occurs due to the redox turnovers.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- W A Beard
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
17
|
Lill H, Engelbrecht S, Schönknecht G, Junge W. The proton channel, CF0, in thylakoid membranes. Only a low proportion of CF1-lacking CF0 is active with a high unit conductance (169 fS). EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 160:627-34. [PMID: 2430802 DOI: 10.1111/j.1432-1033.1986.tb10084.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated the conductance of pea thylakoid membranes and their capacity for photophosphorylation as function of the extraction of chloroplast coupling factor CF1. The degree of extraction was varied via the incubation time in EDTA-containing hypo-osmolar medium and was measured by rocket electroimmunodiffusion. The conductance of thylakoid membranes was measured by flash kinetic spectrophotometry. The time course of extraction followed the time course of thylakoid swelling. Contrary to expectation increasing loss of CF1 did not primarily increase the velocity of proton efflux from each vesicle. Instead proton-tight vesicles were converted to leaky ones, which lost phosphorylating activity. Two subpopulations occurred, although both types of vesicles, leaky and proton-tight ones, were CF1-depleted to a similar degree. This implied that only a small fraction of CF1-lacking CF0 was functional as a proton channel. Tight vesicles had no functional channels while leaky ones had at least one. We determined the proportion of tight vesicles in three independent ways: via the residual phosphorylation activity, via measurements of proton efflux and via measurements of the electric relaxation across the membrane. The results obtained were identical. A statistical evaluation of the data led us to the following conclusions. EDTA treatment produced vesicles containing approximately 10(5) chlorophyll molecules, equivalent to a total of approximately 100 CF0CF1 per vesicle. Even at the highest degree of extraction (75% of total CF1 extracted) only 2.5 out of 75 exposed CF0 per vesicle were proton-conducting. The unit conductance of one open CF0 channel was 169 +/- 18 fS at pH 7.5 and room temperature. At an electrical driving force of 100 mV this was equivalent to the passage of approximately 10(5) protons/s. The most important consequence of this relatively high unit conductance was that a single open CF0 channel was capable of dissipating the protonmotive force of one vesicle, thereby deactivating the whole remaining catalytic capacity of this vesicle.
Collapse
|
18
|
Relationships between rates of steady-state ATP synthesis and the magnitude of the proton-activity gradient across thylakoid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90256-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Theory of proton flow along appressed thylakoid membranes under both non-stationary and stationary conditions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90200-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Adjustable microchemiosmotic character of the proton gradient generated by Systems I and II for photosynthetic phosphorylation in thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90191-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Raven JA. TANSLEY REVIEW No. 2: REGULATION OF PH AND GENERATION OF OSMOLARITY IN VASCULAR PLANTS: A COST-BENEFIT ANALYSIS IN RELATION TO EFFICIENCY OF USE OF ENERGY, NITROGEN AND WATER. THE NEW PHYTOLOGIST 1985; 101:25-77. [PMID: 33873830 DOI: 10.1111/j.1469-8137.1985.tb02816.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The benefits which this paper addresses are those of maintaining the intracellular acid-base balance during growth, and of generating osmolarity related to regulation of turgor in environments of low water potential. These benefits may incur costs in terms of the quantity of potentially growth-limiting resources (photons, water, nitrogen) which are needed to produce unit quantity of 'baseline' plant biomass. The direction (excess H+ or excess OH- ) and magnitude of acid-base perturbation during growth depends on the nature of the N-source (NH4 + , N2 or NO3 - ), so that the costing of pH homoiostasis involves consideration of the costs of overall N-assimilation for comparison with the other costs of growth of a terrestrial C3 plant. Photon costs for the various biochemical and transport processes involved in overall growth, N-assimilation, pH regulation and osmolarity generation are computed using known stoichiometries of coupled reactions. Water costs are deduced from the C-requirements for the various processes (including C lost in associated decarboxylations) by assuming a constant value of water lost in transpiration per unit net C fixed in an illuminated shoot. Nitrogen costs are deduced from the N-content of the plants or compounds under consideration. The computed costs for N-assimilation and the generation of osmolarity are referred to the costs of 'baseline' plant synthesis using the cheapest mechanisms (NH4 + as source for N-assimilation; inorganic ions as the basis for osmolarity generation) so that the increment of cost related to assimilation of N2 or NO3 - , or of osmolarity generation using an organic compatible solute, can be presented. Photon costs of growth with N2 fixation and the processes associated with regulation of pH are (granted the assumptions made as to stoichiometries and plant composition) 9 % higher than are those of growth with NH4 + as N˜ source. The predicted cost of growth with NO3 - as N source depends on the location of NO3 - reduction and the mechanism of OH- disposal, and ranges from 5 to 12% more than that for growth with NH4 + as N source. H2 O (transpiration) costs follow a similar pattern, with growth on N2 as N source costing 12% more, and growth on NO3 - costing to 1-2 to 167 % more, than growth with NH4 + as N source. The extra costs in photons of using compatible solutes (sorbitol, proline or glycine betaine) to generate an osmolarity of 500 osmol m-3 in all of the non-apoplastic water of the plant add 21·5 to 26·1 % to the total costs of growth, while use of compatible solutes to generate osmolarity in 'N' phases (i.e. cytosol, plastid stroma, mitochondrial matrix) alone would add 5·2 to 6·2% The costs of growth in terms of transpirational water are increased 7·9 to 98 % by the use of compatible solutes for osmolarity generation in the 'N' phases only. The increments for the N-containing solutes are higher when NO3 - is the N-source rather than NH4 + . The N-cost of growth with N-containing compatible solutes generating 500 osmol m-3 in 'N' phases increases the N cost of growth by 33%. These predicted costs are under-estimates of 'real' costs which take into account the occurrence of alternate oxidase activity under some growth conditions and the production of additional organic acid anions with N2 as opposed to NH4 + as N source. Nevertheless, the predicted minimum costs of attaining the benefits of pH regulation and of turgor generation are of use in suggesting where selectively significant (i.e. low requirement for a scarce resource) alternative mechanisms may occur. Examples include a possible photon saving by using NH4 + rather than N2 or NO3 - where all three are available; a possible water saving by use of photoreduction of NO3 - in leaves in arid environments; and a possible N saving by use of non-N-containing compatible solutes (polyols) in environments of low water potential. Proof of these suggestions involves comparisons of inclusive fitness of genotypes possessing the trait under consideration with that of genotypes lacking the trait. CONTENTS Summary 26 I. Introduction 27 II. pH Regulation and Osmolarity Generation 27 III. Photon Costs of Various Syntheses Related to pH Regulation and Osmolarity Generation 31 IV. Conclusions on Energy Costs of pH Regulation During Nitrogen Assimilation and Growth 56 V. Conclusions on Energy Costs of Osmolarity Generation 60 VI. Water Costs of pH Regulation and Nitrogen Assimilation 61 VII. Water Costs of Osmolarity Generation 67 VIII. Nitrogen Costs of Osmolarity Generation 69 IX. Conclusions 70 Acknowledgements 72 References 73.
Collapse
Affiliation(s)
- John A Raven
- Department of Biological Sciences, University of Dundee, Dundee DD1 4HN, UK
| |
Collapse
|
22
|
Galmiche JM, Girault G, Lemaire C. STRUCTURE and FUNCTION OF THE COUPLING-FACTOR OF PHOTOPHOSPHORYLATION. Photochem Photobiol 1985. [DOI: 10.1111/j.1751-1097.1985.tb03626.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Double inhibitor titrations of photophosphorylation are consistent with delocalized coupling. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1985. [DOI: 10.1016/0005-2728(85)90262-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|