1
|
Boehm M, Yu J, Reisinger V, Beckova M, Eichacker LA, Schlodder E, Komenda J, Nixon PJ. Subunit composition of CP43-less photosystem II complexes of Synechocystis sp. PCC 6803: implications for the assembly and repair of photosystem II. Philos Trans R Soc Lond B Biol Sci 2013; 367:3444-54. [PMID: 23148271 PMCID: PMC3497071 DOI: 10.1098/rstb.2012.0066] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Photosystem II (PSII) mutants are useful experimental tools to trap potential intermediates involved in the assembly of the oxygen-evolving PSII complex. Here, we focus on the subunit composition of the RC47 assembly complex that accumulates in a psbC null mutant of the cyanobacterium Synechocystis sp. PCC 6803 unable to make the CP43 apopolypeptide. By using native gel electrophoresis, we showed that RC47 is heterogeneous and mainly found as a monomer of 220 kDa. RC47 complexes co-purify with small Cab-like proteins (ScpC and/or ScpD) and with Psb28 and its homologue Psb28-2. Analysis of isolated His-tagged RC47 indicated the presence of D1, D2, the CP47 apopolypeptide, plus nine of the 13 low-molecular-mass (LMM) subunits found in the PSII holoenzyme, including PsbL, PsbM and PsbT, which lie at the interface between the two momomers in the dimeric holoenzyme. Not detected were the LMM subunits (PsbK, PsbZ, Psb30 and PsbJ) located in the vicinity of CP43 in the holoenzyme. The photochemical activity of isolated RC47-His complexes, including the rate of reduction of P680+, was similar to that of PSII complexes lacking the Mn4CaO5 cluster. The implications of our results for the assembly and repair of PSII in vivo are discussed.
Collapse
Affiliation(s)
- M Boehm
- Division of Molecular Biosciences, Imperial College London, South Kensington Campus, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
2
|
Raval MK, Biswal B, Biswal UC. The mystery of oxygen evolution: analysis of structure and function of photosystem II, the water-plastoquinone oxido-reductase. PHOTOSYNTHESIS RESEARCH 2005; 85:267-93. [PMID: 16170631 DOI: 10.1007/s11120-005-8163-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Accepted: 05/26/2005] [Indexed: 05/04/2023]
Abstract
Photosystem II (PS II) of thylakoid membrane of photosynthetic organisms has drawn attention of researchers over the years because it is the only system on Earth that provides us with oxygen that we breathe. In the recent past, structure of PS II has been the focus of research in plant science. The report of X-ray crystallographic structure of PS II complex by the research groups of James Barber and So Iwata in UK is a milestone in the area of research in photosynthesis. It follows the pioneering and elegant work from the laboratories of Horst Witt and W. Saenger in Germany, and J. Shen in Japan. It is time to analyze the historic events during the long journey made by the researchers to arrive at this point. This review makes an attempt to critically review the growth of the advancement of concepts and knowledge on the photosystem in the background of technological development. We conclude the review with perspectives on research and technology that should reveal the complete story of PS II of thylakoid in the future.
Collapse
Affiliation(s)
- M K Raval
- P.G. Department of Chemistry, Government College, Sundargarh, Orissa, India.
| | | | | |
Collapse
|
3
|
Kern J, Loll B, Lüneberg C, DiFiore D, Biesiadka J, Irrgang KD, Zouni A. Purification, characterisation and crystallisation of photosystem II from Thermosynechococcus elongatus cultivated in a new type of photobioreactor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:147-57. [PMID: 15620375 DOI: 10.1016/j.bbabio.2004.10.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 10/08/2004] [Accepted: 10/14/2004] [Indexed: 11/25/2022]
Abstract
The thermophilic cyanobacterium Thermosynechococcus elongatus was cultivated under controlled growth conditions using a new type of photobioreactor, allowing us to optimise growth conditions and the biomass yield. A fast large-scale purification method for monomeric and dimeric photosystem II (PSII) solubilized from thylakoid membranes of this cyanobacterium was developed using fast protein liquid chromatography (FPLC). The obtained PSII core complexes (PSIIcc) were analysed for their pigment stoichiometry, photochemical and oxygen evolution activities, as well as lipid and detergent composition. Thirty-six chlorophyll a (Chla), 2 pheophytin a (Pheoa), 9+/- 1 beta-carotene (Car), 2.9+/-0.8 plastoquinone 9 (PQ9) and 3.8+/-0.5 Mn were found per active centre. For the monomeric and dimeric PSIIcc, 18 and 20 lipid as well as 145 and 220 detergent molecules were found in the detergent shell, respectively. The monomeric and dimeric complexes showed high oxygen evolution activity with 1/4 O(2) released per 37-38 Chla and flash in the best cases. Crystals were obtained from dimeric PSIIcc by a micro-batch method. They diffract synchrotron X-rays to a maximum resolution of 2.9-A, resulting in complete data sets of 3.2 A resolution.
Collapse
Affiliation(s)
- J Kern
- Max-Volmer-Laboratory for Biophysical Chemistry and Biochemistry, Technical University Berlin, 10623 Berlin, Strasse des 17. Juni 135, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Photosystem II particles largely depleted in the two intrinsic polypeptides in the 30 kDa region from Synechococcus
sp. FEBS Lett 2001. [DOI: 10.1016/0014-5793(86)80843-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Manna P, Vermaas W. Mutational studies on conserved histidine residues in the chlorophyll-binding protein CP43 of photosystem II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:666-72. [PMID: 9266711 DOI: 10.1111/j.1432-1033.1997.00666.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two chlorophyll-binding antenna proteins in the photosystem II core, CP43 and CP47, are structurally similar and are thought to have evolved from a common ancestor. Several conserved histidine residues in hydrophobic regions of CP47 have been shown to be important for photosystem II structure, function, and energy transfer. The purpose of this study was to determine whether similarly located histidine residues in CP43 function in a similar way. Three conserved histidine residues in presumed membrane-spanning regions of CP43, His40, His105, and His119, were mutated to glutamine (Q) and tyrosine (Y). The strains H105Q, H119Q, and H119Y were photoautotrophs whereas H40Q, H40Y, and H105Y were obligate photoheterotrophs. The H40Y and H105Y strains lacked detectable amounts of photosystem II reaction centers and hence could not evolve oxygen whereas H40Q retained a significant amount of photosystem II and oxygen evolution capacity. The observation that mutation of histidine residues to tyrosine has more drastic effects than mutation of these residues to glutamine is in agreement with results obtained for CP47 and suggests the involvement of these residues in chlorophyll binding. The drastic functional changes observed upon mutating His40 and His105 of CP43 are similar to those observed when mutating the corresponding histidine residues in CP47, thus suggesting that the similarity between CP43 and CP47 extends to the relative importance of functionally relevant residues. Interestingly, the His40-->Gln mutation in CP43 had significant effects on photosystem II electron transfer in that it affected the thermodynamics of Q(A)- oxidation by Q(B) and increased the charge recombination rate between Q(A)- and donor side components. This indicates that relatively minor changes in CP43 can significantly impact the properties of the photosystem II reaction center. The implications of this finding are discussed.
Collapse
Affiliation(s)
- P Manna
- Department of Botany and Center for the Study of Early Events in Photosynthesis, Arizona State University, Tempe 85287-1601, USA
| | | |
Collapse
|
6
|
Gleiter HM, Haag E, Shen JR, Eaton-Rye JJ, Inoue Y, Vermaas WF, Renger G. Functional characterization of mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in photosystem II. Biochemistry 1994; 33:12063-71. [PMID: 7918426 DOI: 10.1021/bi00206a008] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several autotrophic mutant strains of Synechocystis sp. PCC 6803 carrying short deletions or a single-site mutation within the large, lumen-exposed loop (loop E) of the chlorophyll a-binding photosystem II core protein, CP47, are analyzed for their functional properties by measuring the flash-induced pattern of thermoluminescence, oxygen yield, and fluorescence quantum yield. A physiological and biochemical characterization of these mutant strains has been given in two previous reports [Eaton-Rye, J.J., & Vermaas, W.F.J. (1991) Plant Mol. Biol. 17, 1165-1177; Haag, E., Eaton-Rye, J.J., Renger, G., & Vermaas, S. F.J. (1993) Biochemistry 32, 4444-4454]. The results of the present study show that deletion of charged and conserved amino acids in a region roughly located between residues 370 and 390 decreases the binding affinity of the extrinsic PS II-O protein to photosystem II. Marked differences with PSII-O deletion mutants are observed with respect to Ca2+ requirement and the flash-induced pattern of oxygen evolution. Under conditions where a sufficient light activation is provided, the psbB mutants assayed in this study reveal normal S-state parameters and lifetimes. The results bear two basic implications: (i) the manganese involved in water oxidation can still be bound in a functionally normal or only slightly distorted manner, and (ii) the binding of the extrinsic PS II-O protein to photosystem II is impaired in mutants carrying a deletion in the domain between residues 370 and 390, but the presence of the PS II-O protein is still of functional relevance for the PS II complex, e.g., for maintenance of a high-affinity binding site for Ca2+ and/or involvement during the process of photoactivation.
Collapse
Affiliation(s)
- H M Gleiter
- Max-Volmer Institute for Physical and Biophysical Chemistry, Technical University Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Kuhn MG, Vermaas WF. Deletion mutations in a long hydrophilic loop in the photosystem II chlorophyll-binding protein CP43 in the cyanobacterium Synechocystis sp. PCC 6803. PLANT MOLECULAR BIOLOGY 1993; 23:123-133. [PMID: 8219045 DOI: 10.1007/bf00021425] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In order to investigate the role and function of the hydrophilic region between transmembrane regions V and CI in the photosystem II core antenna protein CP43, we introduced eight different deletions in psbC of Synechocystis sp; PCC 6803 resulting in a loss of 7-11 codons in evolutionary conserved domains in this region. All deletions resulted in an obligate photoheterotrophic phenotype (requirement of glucose for cell growth) and the absence of any detectable oxygen evolution activity. The various deletion mutations showed a different impact on the amount of CP43 in the thylakoid, ranging from wild-type levels of (a now slightly smaller) CP43 to no detectable CP43 at all. All deletions led to a decrease in the amount of the D1 and D2 proteins in the thylakoids with a larger effect on D2 than on D1. CP47, the other major chlorophyll-binding protein, was present in reduced but significant amounts in the thylakoid. Herbicide binding (diuron) was lost in all but one mutant indicating the PSII components are not assembled into functionally intact complexes. Fluorescence-emission spectra confirmed this notion. This indicates that the large hydrophilic loop of CP43 plays an important role in photosystem II, and even though a shortened CP43 is present in thylakoids of most mutants, functional characteristics resembled that of a mutant with interrupted psbC.
Collapse
Affiliation(s)
- M G Kuhn
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | |
Collapse
|
9
|
Shen G, Eaton-Rye JJ, Vermaas WF. Mutation of histidine residues in CP47 leads to destabilization of the photosystem II complex and to impairment of light energy transfer. Biochemistry 1993; 32:5109-15. [PMID: 8494886 DOI: 10.1021/bi00070a019] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Site-directed mutagenesis has been used to change conserved histidine residues in hydrophobic regions of the photosystem II chlorophyll-binding protein CP47 in the cyanobacterium Synechocystis sp. PCC 6803. Nine mutants with one, four mutants with two, and four mutants with three His mutations in CP47 have been generated and characterized. Mutation of any one of seven different His residues to Tyr leads to slower photoautotrophic growth and apparent destabilization of the PS II complex. Mutations introduced into multiple His residues in one mutant exhibited a cumulative effect. Replacing His by Asn leads to a much smaller effect than observed upon mutation to Tyr. This is consistent with the hypothesis that the mutated His residues are chlorophyll ligands: Asn can substitute as chlorophyll ligand, whereas Tyr cannot. Further evidence supporting a role of the mutated His residues in chlorophyll binding comes from measurements of the light intensity needed to half-saturate oxygen evolution. All His mutants with impaired PS II function needed higher light intensities for half-saturation than wild type. A possible explanation for this decrease in antenna efficiency in the mutants is a loss of the Mg in the chlorophyll due to a loss of the fifth ligand, and thus the formation of a pheophytin molecule in the antenna. We conclude that conserved His residues in hydrophobic regions of CP47 indeed are chlorophyll ligands and that these ligands are important for PS II stability as well as efficient antenna function.
Collapse
Affiliation(s)
- G Shen
- Department of Botany, Arizona State University, Tempe 85287-1601
| | | | | |
Collapse
|
10
|
Debus RJ. The manganese and calcium ions of photosynthetic oxygen evolution. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1102:269-352. [PMID: 1390827 DOI: 10.1016/0005-2728(92)90133-m] [Citation(s) in RCA: 970] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- R J Debus
- Department of Biochemistry, University of California Riverside 92521-0129
| |
Collapse
|
11
|
Irrgang KD, Renger G, Vater J. Isolation, purification and partial characterization of a 30-kDa chlorophyll-a/b-binding protein from spinach. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 201:515-22. [PMID: 1935948 DOI: 10.1111/j.1432-1033.1991.tb16311.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A 30-kDa chlorophyll-a/b-binding protein was purified from photosystem II membrane fragments using Ca(2+)-chelating Sepharose 6B chromatography. The protein binds approximately four chlorophyll a molecules, one chlorophyll b molecule and carotenoids. Its 77-K fluorescence-emission spectrum exhibits a maximum at 680 +/- 1 nm. The protein has a high tendency to form a dimer in the presence of Ca2+.Ca2+ binding affects the low-temperature fluorescence-emission maximum, leading to a decrease in its intensity and a blue shift of 1 nm. Similar spectral changes were obtained in the presence of Mg2+, possibly indicating a common binding domain for both cations. We interpret these observations as cation-induced conformational changes of the protein, which were reversible upon subsequent incubation in EDTA. Evidence is presented for the involvement of carboxyl groups in the coordination sphere of the bivalent cations. The possible structural and functional role of the protein is discussed.
Collapse
Affiliation(s)
- K D Irrgang
- Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
12
|
Barbato R, Race HL, Friso G, Barber J. Chlorophyll levels in the pigment-binding proteins of photosystem II. A study based on the chlorophyll to cytochrome ratio in different photosystem II preparations. FEBS Lett 1991; 286:86-90. [PMID: 1864384 DOI: 10.1016/0014-5793(91)80947-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The chlorophyll levels in pigment proteins of photosystem II were investigated by using photosystem II preparations with different levels of complexity. Based on the assumption that there is 1 cytochrome b559 per reaction centre it has been found that oxygen-evolving complexes containing CP26 and CP29 bind 42 chlorophyll molecules. When CP26 and CP29 are stripped away, the resulting PSII cores bind 30 chlorophyll molecules while CP43-less cores bind approximately 18 chlorophylls. It is therefore concluded that CP47 and CP43 bind 9-12 molecules of chlorophyll a and the D1/D2 complex binds 6 chlorophylls. Taken together CP26 and CP29 bind about 12 chlorophyll molecules.
Collapse
Affiliation(s)
- R Barbato
- Wolfson Laboratories, Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK
| | | | | | | |
Collapse
|
13
|
Bricker TM. The structure and function of CPa-1 and CPa-2 in Photosystem II. PHOTOSYNTHESIS RESEARCH 1990; 24:1-13. [PMID: 24419760 DOI: 10.1007/bf00032639] [Citation(s) in RCA: 133] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/1989] [Accepted: 09/14/1989] [Indexed: 06/03/2023]
Abstract
This review presents a summary of recent investigations examining the structure and function of the chlorophyll-proteins CPa-1 (CP47) and CPa-2 (CP43). Comparisons of the derived amino acid sequences of these proteins suggest sites for chlorophyll binding and for interactions between these chlorophyll-proteins and other Photosystem II components. Hydropathy plot analysis of these proteins allows the formulation fo testable hypotheses concerning their topology and orientation within the photosynthetic membrane. The role of these chlorophyll-proteins as interior light-harvesting chlorophyll-a antennae for Photosystem II is examined and other possible additional roles for these important Photosystem II components are discussed.
Collapse
Affiliation(s)
- T M Bricker
- Department of Botany, Louisiana State University, 70803, Baton Rouge, LA, USA
| |
Collapse
|
14
|
Enami I, Kamino K, Shen JR, Satoh K, Katoh S. Isolation and characterization of Photosystem II complexes which lack light-harvesting chlorophyll a/b proteins but retain three extrinsic proteins related to oxygen evolution from spinach. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80006-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Freeze-fracture studies on barley plastid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80215-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Irrgang KD, Boekema EJ, Vater J, Renger G. Structural determination of the photosystem II core complex from spinach. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 178:209-17. [PMID: 3144451 DOI: 10.1111/j.1432-1033.1988.tb14445.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A photosystem II core complex was purified with high yield from spinach by solubilization with beta-dodecylmaltoside. The complex consisted of polypeptides with molecular mass 47, 43, 34, 31, 9 and 4 kDa and some minor components, as detected by silver-staining of polyacrylamide gels. There was no indication for the chlorophyll-a/b-binding, light-harvesting complex polypeptides. The core complex revealed electron-transfer activity (1,5-diphenylcarbazide----2,6-dichloroindophenol) of about 30 mumol reduced 2,6-dichloroindophenol/mg chlorophyll/h. The structural integrity was analyzed by electron microscopy. The detergent-solubilized protein complex has the shape of a triangular disk with a maximum diameter of 13 nm and a maximum height of 6.8 nm. The shape of this core complex differs considerably from that of cyanobacterial photosystem II membrane fragments, which are elongated particles. The structural differences between both the complexes of higher plants and cyanobacteria are discussed with special emphasis on their association with the antenna apparatus in the photosynthetic membranes.
Collapse
Affiliation(s)
- K D Irrgang
- Max-Volmer-Institut für Biophysikalische und Physikalische Chemie, Technische Universität Berlin
| | | | | | | |
Collapse
|
17
|
Vermaas WF, Ikeuchi M, Inoue Y. Protein composition of the photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 1988; 17:97-113. [PMID: 24429663 DOI: 10.1007/bf00047683] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/1987] [Accepted: 12/17/1987] [Indexed: 06/03/2023]
Abstract
The presence of four photosystem II proteins, CP47, CP43, D1 and D2, was monitored in mutants of Synechocystis sp. PCC 6803 that have modified or inactivated genes for CP47, CP43, or D2. It was observed that: (1) thylakoids from mutants without a functional gene encoding CP47 are also depleted in D1 and D2; (2) inactivation of the gene for CP43 leads to decreased but significant levels of CP47, D1 and D2; (3) deletion of part of both genes encoding D2, together with deletion of part of the CP43-encoding gene causes a complete loss of CP47 and D1; (4) thylakoids from a site-directed mutant in which the His-214 residue of D2 has been replaced by asparagine do not contain detectable photosystem II core proteins. However, in another site-directed mutant, in which His-197 has been replaced by tyrosine, some CP47 as well as breakdown products of CP43, but no D1 and D2, can be detected. These data could indicate a central function of CP47 and D2 in stable assembly of the photosystem II complex. CP43, however, is somewhat less critical for formation of the core complex, although CP43 is required for a physiologically functional photosystem II unit. A possible model for the assembly of the photosystem II core complex is proposed.
Collapse
Affiliation(s)
- W F Vermaas
- Solar Energy Research Group, RIKEN, Hirosawa 2-1, 351-01, Wako-shi, Saitama, Japan
| | | | | |
Collapse
|
18
|
Vermaas WF, Ikeuchi M, Inoue Y. Protein composition of the photosystem II core complex in genetically engineered mutants of the cyanobacterium Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 1988; 17:97-113. [PMID: 24429663 DOI: 10.1007/978-94-009-2269-3_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/1987] [Accepted: 12/17/1987] [Indexed: 05/21/2023]
Abstract
The presence of four photosystem II proteins, CP47, CP43, D1 and D2, was monitored in mutants of Synechocystis sp. PCC 6803 that have modified or inactivated genes for CP47, CP43, or D2. It was observed that: (1) thylakoids from mutants without a functional gene encoding CP47 are also depleted in D1 and D2; (2) inactivation of the gene for CP43 leads to decreased but significant levels of CP47, D1 and D2; (3) deletion of part of both genes encoding D2, together with deletion of part of the CP43-encoding gene causes a complete loss of CP47 and D1; (4) thylakoids from a site-directed mutant in which the His-214 residue of D2 has been replaced by asparagine do not contain detectable photosystem II core proteins. However, in another site-directed mutant, in which His-197 has been replaced by tyrosine, some CP47 as well as breakdown products of CP43, but no D1 and D2, can be detected. These data could indicate a central function of CP47 and D2 in stable assembly of the photosystem II complex. CP43, however, is somewhat less critical for formation of the core complex, although CP43 is required for a physiologically functional photosystem II unit. A possible model for the assembly of the photosystem II core complex is proposed.
Collapse
Affiliation(s)
- W F Vermaas
- Solar Energy Research Group, RIKEN, Hirosawa 2-1, 351-01, Wako-shi, Saitama, Japan
| | | | | |
Collapse
|
19
|
Chisholm D, Williams JG. Nucleotide sequence of psbC, the gene encoding the CP-43 chlorophyll a-binding protein of Photosystem II, in the cyanobacterium Synechocystis 6803. PLANT MOLECULAR BIOLOGY 1988; 10:293-301. [PMID: 24277560 DOI: 10.1007/bf00029879] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/1987] [Accepted: 12/03/1987] [Indexed: 06/02/2023]
Abstract
The nucleotide sequence for the Photosystem II gene psbC has been determined for the cyanobacterium Synechocystis 6803. The gene overlaps the last 50 bases of the psbD gene, and both genes are transcribed in the same direction, but read in different frames. This arrangement is identical to that found in all chloroplast genomes for which psbC has been sequenced. The Synechocystis nucleotide sequence is 70% homologous to the tobacco gene and the predicted amino acid sequence shows 85% homology. A possible alternative translation start site for psbC has been conserved between seven plant sequences and the cyanobacterial sequence. The hydropathy plot for the cyanobacterial protein is very similar to plots determined for six plant species. Pairs of histidines that may play a role in binding chlorophyll are conserved between the cyanobacterial and plant amino acid sequences.
Collapse
Affiliation(s)
- D Chisholm
- Experimental Station, Central Research and Development Department, E.I. du Pont de Nemours & Co., Inc., Building E402, 19898, Wilmington, DE, USA
| | | |
Collapse
|
20
|
Choquet Y, de Vitry C, Delepelaire P, Wollman F, Tapie P. Spectroscopic characterization of the Photosystem II chlorophyll-protein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90096-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Cantrell A, Bryant DA. Nucleotide sequence of the genes encoding cytochrome b-559 from the cyanelle genome of Cyanophora paradoxa. PHOTOSYNTHESIS RESEARCH 1988; 16:65-81. [PMID: 24430992 DOI: 10.1007/bf00039486] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/1987] [Accepted: 12/22/1987] [Indexed: 06/03/2023]
Abstract
Cyanophora paradoxa is a flagellated protozoan which possesses unusual, chloroplast-like organelles referred to as cyanelles. The psbE and psbF genes, which encode the two apoprotein subunits of cytochrome b-559, have been cloned from the cyanelle genome of C. paradoxa. The complete nucleotide sequences of these genes and their flanking sequences were determined by the chain-termination, dideoxy method. The psbE gene is composed of 75 codons and predicts a polypeptide of 8462 Da that is seven to nine residues smaller than most other psbE gene products. The psbF gene consists of 43 codons and predicts a polypeptide of 4761 Da. Two open reading frames, whose sequences are highly conserved among cyanobacteria and numerous higher plants, were located in the nucleotide sequence downstream from the psbF gene. The first open reading frame, denoted psbI, is composed of 39 codons, while the second open reading frame, denoted psbJ, is composed of 41 codons. The predicted amino acid sequences of the psbI and psbJ gene products predict proteins of 5473 and 3973 Da respectively. These proteins are probably integral membrane proteins anchored in the membrane by a single, transmembrane alpha helix. The psbEFIJ genes are probably co-transcribed and constitute an operon as found for other organisms. Each of the four genes is preceded by a polypurine sequence which resembles the consensus ribsosome binding sequences for Escherichia coli.
Collapse
Affiliation(s)
- A Cantrell
- Department of Molecular and Cell Biology, Penn State University, S-101 Frear Building, 16802, University Park, PA, USA
| | | |
Collapse
|
22
|
Shen JR, Satoh K, Katoh S. Calcium content of oxygen-evolving Photosystem II preparations from higher plants. Effects of NaCl treatment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1988. [DOI: 10.1016/0005-2728(88)90043-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Green BR. The chlorophyll-protein complexes of higher plant photosynthetic membranes or Just what green band is that? PHOTOSYNTHESIS RESEARCH 1988; 15:3-32. [PMID: 24430789 DOI: 10.1007/bf00054985] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/1987] [Accepted: 09/15/1987] [Indexed: 06/03/2023]
Abstract
Higher plant thylakoid membranes can be fractionated into a bewildering array of macrocomplexes, chlorophyll-protein complexes and chlorophyll-proteins with various deteregents and separations techniques. The chemical nature of each of these entities depends on the particular methods used to obtain them. This review summarizes the current status of the biochemical identification and characterization of individual chlorophyll-proteins and chlorophyll-protein complexes, and attempts to clarify the relationships among them.
Collapse
Affiliation(s)
- B R Green
- Department of Botany, University of British Columbia, V6T 2B1, Vancouver, B.C., Canada
| |
Collapse
|
24
|
|
25
|
Shively JM, Bryant DA, Fuller RC, Konopka AE, Stevens SE, Strohl WR. Functional inclusions in prokaryotic cells. INTERNATIONAL REVIEW OF CYTOLOGY 1988; 113:35-100. [PMID: 3068183 DOI: 10.1016/s0074-7696(08)60846-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J M Shively
- Department of Biological Sciences, Clemson University, South Carolina 29634
| | | | | | | | | | | |
Collapse
|
26
|
Yamagishi A, Fork DC. Photoreduction of QA, QB, and cytochrome b-559 in an oxygen-evolving photosystem II preparation from the thermophilic cyanobacterium Synechococcus sp. Arch Biochem Biophys 1987; 259:124-30. [PMID: 3120642 DOI: 10.1016/0003-9861(87)90477-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Light-induced absorption changes in an oxygen-evolving photosystem II (PS II) preparation from the thermophilic cyanobacterium Synechococcus sp. were analyzed using continuous illumination which caused the reduction of both QA (first stable quinone electron acceptor) and QB (second quinone electron acceptor of photosystem II). In this photosystem II preparation in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) the amount of QA was estimated to be 1 per 42 chlorophylls. In the absence of DCMU, plastoquinone (1.68 per QA) was photoreduced to plastohydroquinone within a few seconds, indicating that QB is reduced and protonated during this period. An electrochromic band shift centered around 685 nm was observed with and without DCMU. The extent of this band shift caused by QB reduction per electron was about a third or half of that caused by QA reduction. A significant amount of cytochrome b-559 (0.86 per QA) was photoreduced. Only 60% of the photoreduction of cytochrome b-559 was inhibited by a DCMU concentration that inhibited electron transfer beyond QB, indicating that the site of the reduction of cytochrome b-559 is located before the QB site and possibly on the donor side of PS II.
Collapse
Affiliation(s)
- A Yamagishi
- Department of Plant Biology, Carnegie Institution of Washington, Stanford, California 94305
| | | |
Collapse
|
27
|
Bassi R, Høyer-Hansen G, Barbato R, Giacometti GM, Simpson DJ. Chlorophyll-proteins of the photosystem II antenna system. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)45205-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Vermaas WF, Williams JG, Arntzen CJ. Sequencing and modification of psbB, the gene encoding the CP-47 protein of Photosystem II, in the cyanobacterium Synechocystis 6803. PLANT MOLECULAR BIOLOGY 1987; 8:317-26. [PMID: 24301194 DOI: 10.1007/bf00021311] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/1986] [Accepted: 01/05/1987] [Indexed: 05/10/2023]
Abstract
The Photosystem II protein CP-47 has been hypothesized to be involved in binding the reaction center chlorophyll. The psbB gene, encoding this protein, was cloned from the genome of the cyanobacterium Synechocystis 6803, and sequenced. The DNA sequence is 68% homologous with that of the psbB gene from spinach, whereas the predicted amino acid sequence is 76% homologous. The hydropathy patterns of Synechocystis and spinach CP-47 are almost indistinguishable, indicating the same general CP-47 folding pattern in the thylakoid membrane in the two species. There are five pairs of histidine residues in CP-47 that are spaced by 13 or 14 amino acids and that are located in hydrophobic regions of the protein; these histidine residues may be involved in chlorophyll binding. Interruption of the psbB gene by a DNA fragment carrying a gene conferring kanamycin resistance results in a loss of Photosystem II activity. This indicates that an intact CP-47 is required for a functional Photosystem II complex, but does not necessarily indicate that this protein would house the reaction center.
Collapse
Affiliation(s)
- W F Vermaas
- Central Research and Development Department, Experimental Station, E. I. du Pont de Nemours & Co., Inc., E402, Wilmington, DE, 19898, USA
| | | | | |
Collapse
|
29
|
Breton J, Katoh S. Orientation of the pigments in Photosystem II: low-temperature linear-dichroism study of a core particle and of its chlorophyll-protein subunits isolated from Synechococcus sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1987. [DOI: 10.1016/0005-2728(87)90252-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Babcock GT. Chapter 6 The photosynthetic oxygen-evolving process. NEW COMPREHENSIVE BIOCHEMISTRY 1987. [DOI: 10.1016/s0167-7306(08)60137-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
31
|
Ohno T, Satoh K, Katoh S. Chemical composition of purified oxygen-evolving complexes from the thermophilic cyanobacterium Synechococcus sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90049-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Kura-Hotta M, Satoh K, Katoh S. Functional linkage between phycobilisome and reaction center in two phycobilisome oxygen-evolving photosystem II preparations isolated from the thermophilic cyanobacterium Synechococcus sp. Arch Biochem Biophys 1986; 249:1-7. [PMID: 3090938 DOI: 10.1016/0003-9861(86)90553-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Photosystem II oxygen-evolving preparations with attached phycobilisomes were isolated from the thermophilic cyanobacterium Synechococcus sp. with beta-octylglucoside or digitonin. Fluorescence emission spectra of the two preparations determined at 77 K largely lacked a far red band which originates from photosystem I. The spectrum of the digitonin preparation was otherwise similar to that of intact cells, whereas the beta-octylglucoside preparation showed a pronounced band at 687 nm, which is considered to be emitted from phycobilisomes. The relative yield of phycobilin fluorescence was similar between the digitonin preparations and the cells but was considerably larger in the beta-octylglucoside preparations at room temperature. The quantum yield of ferricyanide photoreduction determined with light which is absorbed mainly by phycobiliproteins was 0.85 for the digitonin preparation and 0.57 for the beta-octylglucoside preparation. The results indicate that excitation energy is transferred from phycobilisomes to photosystem II reaction centers in the digitonin preparation as efficiently as in intact cells, while a significant portion of light energy harvested by phycobilisomes is not utilized by the primary photochemistry in the beta-octylglucoside preparation. Digitonin and beta-octylglucoside preparations had 65 and 48 chlorophyll a molecules per photosystem II reaction center, respectively. The beta-octylglucoside preparation contained twice as much phycocyanin and allophycocyanin per photosystem II reaction center as the digitonin preparation, which has a phycobiliprotein-to-photosystem II reaction center ratio very similar to that of cells. It is concluded that whereas the beta-octylglucoside preparation contains a considerable amount of free phycobilisomes, all phycobilisomes present in the digitonin preparation are physically and functionally linked to photosystem II reaction center complexes.
Collapse
|
33
|
Bullerjahn GS, Sherman LA. Immunological characterization of photosystem II chlorophyll-binding proteins from the cyanobacterium, Aphanocapsa 6714. J Bioenerg Biomembr 1986; 18:285-93. [PMID: 3091588 DOI: 10.1007/bf00743049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chlorophyll-binding proteins from the cyanobacterium Aphanocapsa 6714 were identified by immunoblotting procedures. Three chlorophyll-binding complexes, CPIII', CPIIIa, and CPIIIb, were associated with PSII. CPIII' likely serves as an' antenna to PSII in Aphanocapsa since it could be removed from active PSII core preparations without loss of activity. The CPIII' proteins cross-reacted to antibodies prepared against the maize PSII light-harvesting complex, LHC-II. The CPIIIa polypeptides cross-reacted to antibodies raised against the Chlamydomonas PSII chlorophyll-proteins 5 and 6, indicating that this complex contains the major chlorophyll-binding species of the cyanobacterial PSII core. Lastly, an antibody prepared against the canobacterial 36-kDa chlorophyll-binding protein [Pakrasi, H., Riethman, H., and Sherman, L. (1985). Proc. Natl. Acad. Sci. USA 82, 6903-6907] recognized only the 36-kDa IIIb apoprotein, indicating that CPIIIb represents a distinct chlorophyll-protein complex.
Collapse
|
34
|
EPR signal II in cyanobacterial Photosystem II reaction-center complexes with and without the 40 kDa chlorophyll-binding subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90177-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
35
|
Numbers and functions of plastoquinone molecules associated with photosystem II preparations from Synechococcus sp. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1986. [DOI: 10.1016/0005-2728(86)90040-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Abstract
Recent advances in the studies on chlorophyll-protein complexes of higher plants are summarized in this article. Special emphasis is laid on the isolation, pigment composition and the absorption and fluorescence properties of the complexes.
Collapse
Affiliation(s)
- K Satoh
- Department of Biology, Okayama University, Tsushima, 700, Okayama, Japan
| |
Collapse
|
37
|
Sonoike K, Katoh S. Isolation of an intrinsic antenna chlorophyll a-protein from the photosystem I reaction center complex of the thermophilic cyanobacterium Synechococcus sp. Arch Biochem Biophys 1986; 244:254-60. [PMID: 3080948 DOI: 10.1016/0003-9861(86)90115-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A chlorophyll-protein was isolated from a Synechococcus P700-chlorophyll a-protein complex free from small subunits (CP1-e) by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis after treatment with 2% 2-mercaptoethanol and 2% SDS. In contrast to CP1-e which, when electrophoresed under denaturating conditions, showed two polypeptide bands of 62 and 60 kDa, the chlorophyll-protein contained only the 60-kDa polypeptide and hence is called CP60. The yield of CP60 was maximal with 1-2% SDS and 2-4% sulfhydryl reagents because the chlorophyll-protein was denatured at higher concentrations of the reagents. The absorption spectrum of CP60, which retained more than half of the chlorophyll alpha molecules originally associated with the 60-kDa subunit of the photosystem I reaction center complex, showed a red band maximum at 672 nm and a small absorption band around 700 nm at liquid nitrogen temperature. CP60 emitted a fluorescence band at 717 to 725 nm at 77 degrees K. The temperature dependence of the far red band of CP60 was essentially the same as that of CP1-e between 77 and 273 degrees K. No photoresponse of P700 was detected in CP60. The results suggest that the two polypeptides resolved by SDS-gel electrophoresis from CP1-e are apoproteins of two distinct chlorophyll-proteins and that CP60 represents a chlorophyll-bearing 60-kDa subunit functioning as an intrinsic antenna protein of the photosystem I reaction center complex. It will also be shown that the temperature dependence of the far red fluorescence band is not related to the photosystem I photochemistry.
Collapse
|
38
|
|
39
|
The Architecture of Photosystem II in Plant Photosynthesis Which Peptide Subunits Carry the Reaction Center of PS II? ACTA ACUST UNITED AC 1985. [DOI: 10.1007/978-3-642-82688-7_31] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|