Hoger JH, Tai SP, Kaplan S. Membrane adenosine triphosphatase in synchronous cultures of Rhodobacter sphaeroides.
BIOCHIMICA ET BIOPHYSICA ACTA 1987;
898:70-80. [PMID:
2950926 DOI:
10.1016/0005-2736(87)90110-6]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Studies of intracytoplasmic membrane biogenesis utilizing synchronized cultures of Rhodobacter sphaeroides have revealed that most intracytoplasmic membrane proteins accumulate continuously throughout the cell cycle while new phospholipid appears discontinuously within the intracytoplasmic membrane. The resulting changes in the structure of the membrane lipids was proposed to influence the activities of enzymes associated with the intracytoplasmic membranes (Wraight, C.A., Leuking, D.R., Fraley, R.T. and Kaplan, S. (1978) J. Biol. Chem. 253, 465-471). We have extended the study of intracytoplasmic membrane biogenesis in R. sphaeroides to include the membrane adenosine triphosphatase. The membrane bound Mg2+-dependent, oligomycin-sensitive adenosine triphosphatase activity was measured throughout the cell cycle for steady-state synchronized cells of R. sphaeroides and found to accumulate discontinuously. Following treatment with an uncoupling reagent (2,4-dinitrophenol) the intracytoplasmic membrane associated adenosine triphosphatase activity was stimulated uniformly in membranes isolated at different stages of the cell cycle. The adenosine triphosphatase was also measured by quantitative immunoblots utilizing specific antibody to compare the enzyme activity and enzyme protein mass. Immunologic measurement of the adenosine triphosphatase in isolated membranes indicated a constant ratio of enzyme to chromatophore protein exists during the cell cycle in contrast to the discontinuous accumulation of adenosine triphosphatase activity. These results are discussed in light of the cell-cycle specific synthesis of the intracytoplasmic membrane.
Collapse