1
|
Semenov AY, Tikhonov AN. Electrometric and Electron Paramagnetic Resonance Measurements of a Difference in the Transmembrane Electrochemical Potential: Photosynthetic Subcellular Structures and Isolated Pigment-Protein Complexes. MEMBRANES 2023; 13:866. [PMID: 37999352 PMCID: PMC10673362 DOI: 10.3390/membranes13110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
A transmembrane difference in the electrochemical potentials of protons (ΔμH+) serves as a free energy intermediate in energy-transducing organelles of the living cell. The contributions of two components of the ΔμH+ (electrical, Δψ, and concentrational, ΔpH) to the overall ΔμH+ value depend on the nature and lipid composition of the energy-coupling membrane. In this review, we briefly consider several of the most common instrumental (electrometric and EPR) methods for numerical estimations of Δψ and ΔpH. In particular, the kinetics of the flash-induced electrometrical measurements of Δψ in bacterial chromatophores, isolated bacterial reaction centers, and Photosystems I and II of the oxygenic photosynthesis, as well as the use of pH-sensitive molecular indicators and kinetic data regarding pH-dependent electron transport in chloroplasts, have been reviewed. Further perspectives on the application of these methods to solve some fundamental and practical problems of membrane bioenergetics are discussed.
Collapse
Affiliation(s)
- Alexey Yu. Semenov
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia;
| | | |
Collapse
|
2
|
Kell DB. A protet-based, protonic charge transfer model of energy coupling in oxidative and photosynthetic phosphorylation. Adv Microb Physiol 2021; 78:1-177. [PMID: 34147184 DOI: 10.1016/bs.ampbs.2021.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Textbooks of biochemistry will explain that the otherwise endergonic reactions of ATP synthesis can be driven by the exergonic reactions of respiratory electron transport, and that these two half-reactions are catalyzed by protein complexes embedded in the same, closed membrane. These views are correct. The textbooks also state that, according to the chemiosmotic coupling hypothesis, a (or the) kinetically and thermodynamically competent intermediate linking the two half-reactions is the electrochemical difference of protons that is in equilibrium with that between the two bulk phases that the coupling membrane serves to separate. This gradient consists of a membrane potential term Δψ and a pH gradient term ΔpH, and is known colloquially as the protonmotive force or pmf. Artificial imposition of a pmf can drive phosphorylation, but only if the pmf exceeds some 150-170mV; to achieve in vivo rates the imposed pmf must reach 200mV. The key question then is 'does the pmf generated by electron transport exceed 200mV, or even 170mV?' The possibly surprising answer, from a great many kinds of experiment and sources of evidence, including direct measurements with microelectrodes, indicates it that it does not. Observable pH changes driven by electron transport are real, and they control various processes; however, compensating ion movements restrict the Δψ component to low values. A protet-based model, that I outline here, can account for all the necessary observations, including all of those inconsistent with chemiosmotic coupling, and provides for a variety of testable hypotheses by which it might be refined.
Collapse
Affiliation(s)
- Douglas B Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative, Biology, University of Liverpool, Liverpool, United Kingdom; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
3
|
Wu X, Shu S, Wang Y, Yuan R, Guo S. Exogenous putrescine alleviates photoinhibition caused by salt stress through cooperation with cyclic electron flow in cucumber. PHOTOSYNTHESIS RESEARCH 2019; 141:303-314. [PMID: 31004254 DOI: 10.1007/s11120-019-00631-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 02/22/2019] [Indexed: 05/24/2023]
Abstract
When plants suffer from abiotic stresses, cyclic electron flow (CEF) is induced for photo-protection. Putrescine (Put), a primary polyamine in chloroplasts, plays a critical role in stress tolerance. However, the relationship between CEF and Put in chloroplasts for photo-protection is unknown. In this study, we investigated the role of Put-induced CEF for salt tolerance in cucumber plants (Cucumis sativus L). Treatment with 90 mM NaCl and/or Put did not influence the maximum photochemical efficiency of PSII (Fv/Fm), but the photoactivity of PSI was severely inhibited by NaCl. Salt stress induced a high level of CEF; moreover, plants treated with both NaCl and Put exhibited much higher CEF activity and ATP accumulation than those exhibited by single-salt-treated plants to provide an adequate ATP/NADPH ratio for plant growth. Furthermore, Put decreased the trans-membrane proton gradient (ΔpH), which was accompanied by reduced pH-dependent non-photochemical quenching (NPQ) and an increased the effective quantum yield of PSII (Y(II)). The ratio of NADP+/NADPH increased significantly with Put in salt-stressed leaves compared with the ratio in leaves treated with NaCl, indicating that Put relieved over-reduction pressure at the PSI acceptor side caused by salt stress. Collectively, our results suggest that exogenous Put creates an excellent condition for CEF promotion: a large amount of pmf is predominantly stored as Δψ, resulting in moderate lumen pH and low NPQ, while maintaining high rates of ATP synthesis (high pmf).
Collapse
Affiliation(s)
- Xinyi Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruonan Yuan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Nanjing Agricultural University (Suqian) Academy of Protected Horticulture, Suqian, 223800, Jiangsu, China.
| |
Collapse
|
4
|
Vershubskii AV, Trubitsin BV, Priklonskii VI, Tikhonov AN. Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:388-401. [DOI: 10.1016/j.bbamem.2016.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/20/2016] [Accepted: 11/29/2016] [Indexed: 02/06/2023]
|
5
|
Ullrich CI, Köhler K, Baier M, Förster B, Hartung W. Neutral Red as a Redox Dye Induces K+Efflux and Current-Voltage Changes inEremosphaera, Lemna, and Guard Cells*. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1990.tb00150.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Ioannidis NE, Kotzabasis K. Polyamines in chemiosmosis in vivo: A cunning mechanism for the regulation of ATP synthesis during growth and stress. FRONTIERS IN PLANT SCIENCE 2014; 5:71. [PMID: 24592272 PMCID: PMC3938100 DOI: 10.3389/fpls.2014.00071] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/10/2014] [Indexed: 05/07/2023]
Abstract
Polyamines (PAs) are low molecular weight amines that occur in every living organism. The three main PAs (putrescine, spermidine, and spermine) are involved in several important biochemical processes covered in recent reviews. As rule of thumb, increase of the cellular titer of PAs in plants is related to cell growth and cell tolerance to abiotic and biotic stress. In the present contribution, we describe recent findings from plant bioenergetics that bring to light a previously unrecognized dynamic behavior of the PA pool. Traditionally, PAs are described by many authors as organic polycations, when in fact they are bases that can be found in a charged or uncharged form. Although uncharged forms represent less than 0.1% of the total pool, we propose that their physiological role could be crucial in chemiosmosis. This process describes the formation of a PA gradient across membranes within seconds and is difficult to be tested in vivo in plants due to the relatively small molecular weight of PAs and the speed of the process. We tested the hypothesis that PAs act as permeable buffers in intact leaves by using recent advances in vivo probing. We found that an increase of PAs increases the electric component (Δψ) and decreases the ΔpH component of the proton motive force. These findings reveal an important modulation of the energy production process and photoprotection of the chloroplast by PAs. We explain in detail the theory behind PA pumping and ion trapping in acidic compartments (such as the lumen in chloroplasts) and how this regulatory process could improve either the photochemical efficiency of the photosynthetic apparatus and increase the synthesis of ATP or fine tune antenna regulation and make the plant more tolerant to stress.
Collapse
Affiliation(s)
- Nikolaos E. Ioannidis
- *Correspondence: Nikolaos E. Ioannidis and Kiriakos Kotzabasis, Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece e-mail: ;
| | - Kiriakos Kotzabasis
- *Correspondence: Nikolaos E. Ioannidis and Kiriakos Kotzabasis, Department of Biology, University of Crete, Voutes University Campus, 70013 Heraklion, Crete, Greece e-mail: ;
| |
Collapse
|
7
|
Tikhonov AN. Energetic and regulatory role of proton potential in chloroplasts. BIOCHEMISTRY (MOSCOW) 2012; 77:956-74. [DOI: 10.1134/s0006297912090027] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tikhonov AN, Agafonov RV, Grigor'ev IA, Kirilyuk IA, Ptushenko VV, Trubitsin BV. Spin-probes designed for measuring the intrathylakoid pH in chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:285-94. [PMID: 18226594 DOI: 10.1016/j.bbabio.2007.12.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/11/2007] [Accepted: 12/26/2007] [Indexed: 10/22/2022]
Abstract
Nitroxide radicals are widely used as molecular probes in different fields of chemistry and biology. In this work, we describe pH-sensitive imidazoline- and imidazolidine-based nitroxides with pK values in the range 4.7-7.6 (2,2,3,4,5,5-hexamethylperhydroimidazol-1-oxyl, 4-amino-2,2,5,5-tetramethyl-2,5-dihydro-1H-imidazol-1-oxyl, 4-dimethylamino-2,2-diethyl-5,5-dimethyl-2,5-dihydro-1H-imidazol-1-oxyl, and 2,2-diethyl-5,5-dimethyl-4-pyrrolidyline-1-yl-2,5-dihydro-1H-imidazol-1-oxyl), which allow the pH-monitoring inside chloroplasts. We have demonstrated that EPR spectra of these spin-probes localized in the thylakoid lumen markedly change with the light-induced acidification of the thylakoid lumen in chloroplasts. Comparing EPR spectrum parameters of intrathylakoid spin-probes with relevant calibrating curves, we could estimate steady-state values of lumen pHin established during illumination of chloroplasts with continuous light. For isolated bean (Vicia faba) chloroplasts suspended in a medium with pHout=7.8, we found that pHin approximately 5.4-5.7 in the state of photosynthetic control, and pHin approximately 5.7-6.0 under photophosphorylation conditions. Thus, ATP synthesis occurs at a moderate acidification of the thylakoid lumen, corresponding to transthylakoid pH difference DeltapH approximately 1.8-2.1. These values of DeltapH are consistent with a point of view that under steady-state conditions the proton gradient DeltapH is the main contributor to the proton motive force driving the operation of ATP synthesis, provided that stoichiometric ratio H+/ATP is n> or =4-4.7.
Collapse
Affiliation(s)
- Alexander N Tikhonov
- Department of Biophysics, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | | | | | | | | | |
Collapse
|
9
|
Ioannidis NE, Kotzabasis K. Effects of polyamines on the functionality of photosynthetic membrane in vivo and in vitro. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1767:1372-82. [PMID: 17980696 DOI: 10.1016/j.bbabio.2007.10.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 10/02/2007] [Accepted: 10/10/2007] [Indexed: 02/02/2023]
Abstract
The three major polyamines are normally found in chloroplasts of higher plants and are implicated in plant growth and stress response. We have recently shown that putrescine can increase light energy utilization through stimulation of photophosphorylation [Ioannidis et al., (2006) BBA-Bioenergetics, 1757, 821-828]. We are now to compare the role of the three major polyamines in terms of chloroplast bioenergetics. There is a different mode of action between the diamine putrescine and the higher polyamines (spermidine and spermine). Putrescine is an efficient stimulator of ATP synthesis, better than spermidine and spermine in terms of maximal % stimulation. On the other hand, spermidine and spermine are efficient stimulators of non-photochemical quenching. Spermidine and spermine at high concentrations are efficient uncouplers of photophosphorylation. In addition, the higher the polycationic character of the amine being used, the higher was the effectiveness in PSII efficiency restoration, as well as stacking of low salt thylakoids. Spermine with 50 microM increase F(V) as efficiently as 100 microM of spermidine or 1000 microM of putrescine or 1000 microM of Mg(2+). It is also demonstrated that the increase in F(V) derives mainly from the contribution of PSIIalpha centers. These results underline the importance of chloroplastic polyamines in the functionality of the photosynthetic membrane.
Collapse
Affiliation(s)
- Nikolaos E Ioannidis
- Department of Biology, University of Crete, P.O. Box 2208, GR-71409 Heraklion, Crete, Greece
| | | |
Collapse
|
10
|
Ioannidis NE, Sfichi L, Kotzabasis K. Putrescine stimulates chemiosmotic ATP synthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:821-8. [PMID: 16828052 DOI: 10.1016/j.bbabio.2006.05.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 05/21/2006] [Accepted: 05/24/2006] [Indexed: 10/24/2022]
Abstract
Putrescine is a main polyamine found in animals, plants and microbes, but the molecular mechanism underlying its mode of action is still obscure. In vivo chlorophyll a fluorescence in tobacco leaf discs indicated that putrescine treatment affects the energization of the thylakoid membrane. Molecular dissection of the electron transport chain by biophysical and biochemical means provided new evidence that putrescine can play an important bioenergetic role acting as a cation and as a permeant natural buffer. We demonstrate that putrescine increases chemiosmotic ATP synthesis more than 70%. Also a regulation of the energy outcome by small changes in putrescine pool under the same photonic environment (i.e., photosynthetically active radiation) is shown. The proposed molecular mechanism has at least four conserved features: (i) presence of a membrane barrier, (ii) a proton-driven ATPase, (iii) a DeltapH and (iv) a pool of putrescine.
Collapse
|
11
|
|
12
|
Sigalat C, de Kouchkovsky Y, Haraux F. Flow-force relationships in lettuce thylakoids. 2. Effect of the uncoupler FCCP on local proton resistances at the ATPase level. Biochemistry 1993; 32:10201-8. [PMID: 8399147 DOI: 10.1021/bi00089a041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The relationship between the steady-state proton gradient (delta pH) and the rate of phosphorylation was investigated in thylakoids under various conditions. Under partial uncoupling by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), the rate of ATP synthesis was reduced by less than expected from the decrease of delta pH. This was observed in the case of the pyocyanine-mediated cyclic electron flow around photosystem 1, but not with the H2O-->photosystem 2-->cytochrome b6f-->photosystem 1-->methyl viologen system. In state 4, a unique relation was found between delta pH and the "phosphate potential", delta Gp, regardless of whether the energy level was controlled by light input or FCCP. The anomalous effect of FCCP on the rate of ATP synthesis disappeared when the ATPase was partially blocked by the reversible inhibitor venturicidin, but not in the presence of tentoxin, an irreversible inhibitor. These results are consistent with the existence of a small kinetic barrier for protons, limiting their access to the ATPase. This resistance would be collapsed by FCCP.
Collapse
|
13
|
Sigalat C, Haraux F, de Kouchkovsky Y. Flow-force relationships in lettuce thylakoids. 1. Strict control of electron flow by internal pH. Biochemistry 1993; 32:10193-200. [PMID: 8399146 DOI: 10.1021/bi00089a040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The regulation by the proton gradient of the electron flow from water to ferricyanide was investigated in thylakoids extracted from lettuce leaves. When the transmembrane proton current was varied by an uncoupler or by the ATP synthase activity, a unique relationship was found between the rate of ferricyanide reduction and the proton gradient, restricted here to its delta pH component. This behavior was conserved in CF1-depleted thylakoids where the passive proton flow was varied by the concentration of an Fo inhibitor or by the concentration of an uncoupler after 100% inhibition of Fo. This shows that under our experimental conditions no direct proton transfer exists in steady state between the site of regulation of the redox chain and the ATPase. Studies at two different pH's indicate that the internal pH, and not the transmembrane pH difference, controls the electron transfer between PS2 and PS1. Modeling the data suggests that a single deprotonation step is kinetically limiting.
Collapse
|
14
|
Gutman M, Kotlyar AB, Borovok N, Nachliel E. Reaction of bulk protons with a mitochondrial inner membrane preparation: time-resolved measurements and their analysis. Biochemistry 1993; 32:2942-6. [PMID: 8384483 DOI: 10.1021/bi00063a003] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The laser-induced proton pulse technique [Gutman, M. (1986) Methods Enzymol. 127, 522-538] was applied on suspensions of submitochondrial vesicles, and the exchange of protons between the bulk and the mitochondrial membranes was measured in the time-resolved domain with a submicrosecond resolution. The protons were discharged by photoexcitation of pyranine (8-hydroxypyrene-1,3,6-trisulfonate) by a short laser pulse, and the reprotonation of the pyranine anion was monitored at 457.8 nm. In parallel, the protonation of the membrane was followed at 496.5 nm, looking at the transient absorbance of fluorescein, covalently attached to the M side of the membrane. The analysis of the relaxation dynamics was carried out by a simulation procedure that reconstructs the observed dynamics of the two chromophores. The analysis revealed the presence of the membrane indigenous buffering moieties. The low-pK buffer (pK 4.1) was present in a quantity of 100 +/- 20 nmol/mg of protein, and its kinetics indicate that it appears in multianionic clusters bearing a negative electric charge. The medium-pK buffer (pK 6.9) was present in a larger quantity (200 +/- 20 nmol/mg), and its kinetic parameter indicated clustering into positively charged domains. Both types of indigenous buffer reacted with the proton and pyranine anion in unhindered diffusion-controlled reactions. On the other hand, the exchange of protons between the indigenous buffer moieties was rather slow. No evidence was found for the presence of sites capable of retaining a proton, secluded from the bulk, for a time frame longer than 100 microseconds as required by the models of localized proton gradient.
Collapse
Affiliation(s)
- M Gutman
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | |
Collapse
|
15
|
Meyer S, Phung Nhu Hung S, Trémolières A, de Kouchkovsky Y. Energy coupling, membrane lipids and structure of thylakoids of Lupin plants submitted to water stress. PHOTOSYNTHESIS RESEARCH 1992; 32:95-107. [PMID: 24408280 DOI: 10.1007/bf00035944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/1991] [Accepted: 02/10/1992] [Indexed: 06/03/2023]
Abstract
Bioenergetic properties of thylakoids from plants submitted to a water stress stress (watering stopped for 6-15 days) have been measured in two lupin genotypes characterized as resistant or susceptible to drought. This energy coupling was assessed by flow-force relationships relating the phosphorylation rate to the magnitude of the proton gradient % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiabgs5aenaaxacabaGaeqiVd0galeqabaGaaiOFaaaakmaaBaaale% aacaWGibWaaWbaaWqabeaacqGHRaWkaaaaleqaaaaa!4D55!\[\Delta \mathop \mu \limits^\~ _{H^ + } \]. The fluorescent probe 9-aminoacridine was used to express, as a ΔpH, the whole % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqef0uAJj3BZ9Mz0bYu% H52CGmvzYLMzaerbd9wDYLwzYbItLDharqqr1ngBPrgifHhDYfgasa% acOqpw0xe9v8qqaqFD0xXdHaVhbbf9v8qqaqFr0xc9pk0xbba9q8Wq% Ffea0-yr0RYxir-Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dme% GabaqaaiGacaGaamqadaabaeaafiaakabbaaa6daaahjxzL5gapeqa% aiabgs5aenaaxacabaGaeqiVd0galeqabaGaaiOFaaaakmaaBaaale% aacaWGibWaaWbaaWqabeaacqGHRaWkaaaaleqaaaaa!4D55!\[\Delta \mathop \mu \limits^\~ _{H^ + } \] by calibrating fluorescence quenching against the phosphate potential ΔGp in 'state 4', i.e., when ATP synthesis is strictly balanced by its hydrolysis. This calibration procedure was shown to be unaffected by treatments. At equal energization (iso-ΔpH), ATP synthesis was halved by a medium stress and disappeared for a more severe stress, whereas ΔpH at equal energy input (light) declined only under a severe drought. For an identical ΔpH, PS 1-driven phosphorylation is always more efficient than PS 2, both in control and stressed plants. Thus, uncoupling is not the cause of the phosphorylation decline; moreover, retention of a 'micro-chemiosmotic' type of coupling implies that the distribution of photosystems and ATPases is unchanged. Parallel to these functional alterations, the lipid content of thylakoids dramatically dropped. As galactolipids fell strongly, neutral lipids rose slightly. Fatty acids decreased then increased with stress, yet phosphorylation did not recover in the latter case and membrane permeability to protons remained unaffected. Overall, these observations suggest a preserved thylakoid structure and this was indeed observed on electron micrographs, even for a severe stress. Therefore, the membrane integrity is probably preserved more by the protein network than by the lipid matrix and the loss of the phosphorylating activity mainly reflects a loss of ATPases or at least their inactivation, possibly due to their altered lipid environment. Finally, from the bioenergetic point of view, the susceptible genotype was unexpectedly less affected by drought than the resistant.
Collapse
Affiliation(s)
- S Meyer
- Biosystèmes Membranaires, CNRS (UPR 39), Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
16
|
Allnutt F, Ewy R, Renganathan M, Pan R, Dilley R. Nigericin and hexylamine effects on localized proton gradients in thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(05)80184-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Bizouarn T, de Kouchkovsky Y, Haraux F. Dependence of kinetic parameters of chloroplast ATP synthase on external pH, internal pH, and delta pH. Biochemistry 1991; 30:6847-53. [PMID: 1648963 DOI: 10.1021/bi00242a007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ATP synthesis by the membrane-bound chloroplast ATPase in the oxidized state of its gamma disulfide bridge was studied as a function of the ADP concentration, delta pH, and external pH values, under conditions where delta pH was clamped and delocalized. At a given pH, the rate of phosphorylation at saturating ADP concentration (Vmax) and the Michaelis constant Km (ADP) depend strictly on delta pH, irrespective of the way the delta pH is generated: there evidently is no specific interaction between the redox carriers and the ATPase. It was also shown that both Km (ADP) and Vmax depend on delta pH, not on the external or internal pH. This suggests that internal proton binding and external proton release are concerted, so that net proton translocation is an elementary step of the phosphorylation process. These results appear to be consistent with a modified "proton substrate" model, provided the delta G0 of the condensation reaction within the catalytic site is low. At least one additional assumption, such as a shift in the pK of bound phosphate or the existence of an additional group transferring protons from or to reactants, is nevertheless required to account for the strict delta pH dependence of the rate of ATP synthesis. A purely "conformational" model, chemically less explicit, only requires constraints on the pK's of the groups involved in proton translocation.
Collapse
Affiliation(s)
- T Bizouarn
- Biosystèmes Membranaires (UPR 39), CNRS, Gif-sur-Yvette, France
| | | | | |
Collapse
|
18
|
Laasch H. Relationship between the octanol-water partition coefficient of tertiary amines and their effect of 'selective' uncoupling of photophosphorylation. PLANTA 1989; 178:553-560. [PMID: 24213053 DOI: 10.1007/bf00963826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/1988] [Accepted: 02/07/1989] [Indexed: 06/02/2023]
Abstract
A series of tertiary amines was investigated for effects on the transmembrane proton potential difference (Δ [Formula: see text]H), on photophosphorylation and on electron-flux control related to the intrathylakoid proton potential ([Formula: see text]HI), using isolated chloroplasts ofSpinacia oleracea L. As indicated by 9-aminoacridine fluorescence and [14C]methylamine uptake, all amines studied inhibited a build-up ofΔ [Formula: see text]H and, in parallel, ATP synthesis. Even whenΔ [Formula: see text]H was low, strong[Formula: see text]H1-dependent electron-flux control was observed under the influence of tertiary amines. The strength of flux control in the presence of lowΔ [Formula: see text]H and the effectiveness of inhibition of ATP synthesis linearly increased with the lipophilicity of the amines. The most effective of the amines tested caused 50% inhibition of ATP synthesis at a concentration of 6 μM, which is about 1000-fold lower than the concentration required for inhibition by methylamine. The data presented indicate the existence of two proton domains in the thylakoid vesicles, one of them feeding the ATP-synthase, the other the sites of pH-dependent electron-flux control. It is concluded that tertiary amines develop their action in a lipophilic domain of the thylakoid membrane, in the vicinity of the ATP-synthase complex. A mechanism for 'selective' uncoupling and for the maintenance of[Formula: see text]HI-dependent electron flux control in the presence of lowΔ [Formula: see text]H is discussed.
Collapse
Affiliation(s)
- H Laasch
- Institut für ökologische Pflanzenphysiologie und Geobotanik, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-4000, Düsseldorf, Federal Republic of Germany
| |
Collapse
|
19
|
Zimányi L, Garab G. Configuration of the electric field and distribution of ions in energy transducing biological membranes: Model calculations in a vesicle containing discrete charges. J Theor Biol 1989. [DOI: 10.1016/s0022-5193(89)80178-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Photophosphorylation at variable ADP concentration but constant ΔpH in lettuce thylakoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1989. [DOI: 10.1016/s0005-2728(89)80170-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|