1
|
Tremp AZ, Saeed S, Dessens JT. NAD(P) transhydrogenase isoform distribution provides insight into apicomplexan evolution. Front Ecol Evol 2023; 11:fevo.2023.1216385. [PMID: 37581102 PMCID: PMC7614955 DOI: 10.3389/fevo.2023.1216385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Membrane-located NAD(P) transhydrogenase (NTH) catalyses reversible hydride ion transfer between NAD(H) and NADP(H), simultaneously translocating a proton across the membrane. The enzyme is structurally conserved across prokaryotes and eukaryotes. In heterotrophic bacteria NTH proteins reside in the cytoplasmic membrane, whereas in animals they localise in the mitochondrial inner membrane. Eukaryotic NTH proteins exists in two distinct configurations (isoforms) and have non-mitochondrial functions in unicellular eukaryotes like Plasmodium, the causative agent of malaria. In this study, we carried out a systematic analysis of nth genes across eukaryotic life to determine its prevalence and distribution of isoforms. The results reveal that NTH is found across all major lineages, but that some organisms, notably plants, lack nth genes altogether. Isoform distribution and phylogenetic analysis reveals different nth gene loss scenarios in apicomplexan lineages, which sheds new light on the evolution of the Piroplasmida and Eimeriidae.
Collapse
Affiliation(s)
- Annie Z. Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Sadia Saeed
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Johannes T. Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| |
Collapse
|
2
|
Saeed S, Tremp AZ, Sharma V, Lasonder E, Dessens JT. NAD(P) transhydrogenase has vital non-mitochondrial functions in malaria parasite transmission. EMBO Rep 2020; 21:e47832. [PMID: 31951090 PMCID: PMC7054674 DOI: 10.15252/embr.201947832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 12/30/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form (NADP) are vital for cell function in all organisms and form cofactors to a host of enzymes in catabolic and anabolic processes. NAD(P) transhydrogenases (NTHs) catalyse hydride ion transfer between NAD(H) and NADP(H). Membrane‐bound NTH isoforms reside in the cytoplasmic membrane of bacteria, and the inner membrane of mitochondria in metazoans, where they generate NADPH. Here, we show that malaria parasites encode a single membrane‐bound NTH that localises to the crystalloid, an organelle required for sporozoite transmission from mosquitos to vertebrates. We demonstrate that NTH has an essential structural role in crystalloid biogenesis, whilst its enzymatic activity is required for sporozoite development. This pinpoints an essential function in sporogony to the activity of a single crystalloid protein. Its additional presence in the apicoplast of sporozoites identifies NTH as a likely supplier of NADPH for this organelle during liver infection. Our findings reveal that Plasmodium species have co‐opted NTH to a variety of non‐mitochondrial organelles to provide a critical source of NADPH reducing power.
Collapse
Affiliation(s)
- Sadia Saeed
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Annie Z Tremp
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Vikram Sharma
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| | - Edwin Lasonder
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| | - Johannes T Dessens
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
3
|
Jackson JB. A review of the binding-change mechanism for proton-translocating transhydrogenase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1839-46. [PMID: 22538293 DOI: 10.1016/j.bbabio.2012.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 11/17/2022]
Abstract
Proton-translocating transhydrogenase is found in the inner membranes of animal mitochondria, and in the cytoplasmic membranes of many bacteria. It catalyses hydride transfer from NADH to NADP(+) coupled to inward proton translocation. Evidence is reviewed suggesting the enzyme operates by a "binding-change" mechanism. Experiments with Escherichia coli transhydrogenase indicate the enzyme is driven between "open" and "occluded" states by protonation and deprotonation reactions associated with proton translocation. In the open states NADP(+)/NADPH can rapidly associate with, or dissociate from, the enzyme, and hydride transfer is prevented. In the occluded states bound NADP(+)/NADPH cannot dissociate, and hydride transfer is allowed. Crystal structures of a complex of the nucleotide-binding components of Rhodospirillum rubrum transhydrogenase show how hydride transfer is enabled and disabled at appropriate steps in catalysis, and how release of NADP(+)/NADPH is restricted in the occluded state. Thermodynamic and kinetic studies indicate that the equilibrium constant for hydride transfer on the enzyme is elevated as a consequence of the tight binding of NADPH relative to NADP(+). The protonation site in the translocation pathway must face the outside if NADP(+) is bound, the inside if NADPH is bound. Chemical shift changes detected by NMR may show where alterations in protein conformation resulting from NADP(+) reduction are initiated. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
Collapse
|
4
|
Obiozo UM, Brondijk THC, White AJ, van Boxel G, Dafforn TR, White SA, Jackson JB. Substitution of Tyrosine 146 in the dI Component of Proton-translocating Transhydrogenase Leads to Reversible Dissociation of the Active Dimer into Inactive Monomers. J Biol Chem 2007; 282:36434-43. [PMID: 17911104 DOI: 10.1074/jbc.m705433200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase couples the redox reaction between NADH and NADP+ to proton translocation across a membrane. The protein has three components: dI binds NADH, dIII binds NADP+, and dII spans the membrane. Transhydrogenase is a "dimer" of two dI-dII-dIII "monomers"; x-ray structures suggested that the two catalytic sites alternate during turnover. Invariant Tyr146 in recombinant dI of Rhodospirillum rubrum transhydrogenase was substituted with Phe and Ala (proteins designated dI.Y146F and dI.Y146A, respectively). Analytical ultracentrifuge experiments and differential scanning calorimetry show that dI.Y146A more readily dissociates into monomers than wild-type dI. Analytical ultracentrifuge and Trp fluorescence experiments indicate that the dI.Y146A monomers bind NADH much more weakly than dimers. Wild-type dI and dI.Y146F reconstituted activity to dI-depleted membranes with similar characteristics. However, dI.Y146A reconstituted activity in its dimeric form but not in its monomeric form, this despite monomers retaining their native fold and binding to the dI-depleted membranes. It is suggested that transhydrogenase reconstructed with monomers of dI.Y146A is catalytically compromised, at least partly as a consequence of the lowered affinity for NADH, and this results from lost interactions between the nucleotide binding site and the protein beta-hairpin upon dissociation of the dI dimer. The importance of these interactions and their coupling to dI domain rotation in the mechanism of action of transhydrogenase is emphasized. Two peaks in the 1H NMR spectrum of wild-type dI are broadened in dI.Y146A and are tentatively assigned to S-methyl groups of Met resonances in the beta-hairpin, consistent with the segmental mobility of this feature in the structure.
Collapse
Affiliation(s)
- U Mirian Obiozo
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
5
|
Egorov MV, Tigerström A, Pestov NB, Korneenko TV, Kostina MB, Shakhparonov MI, Rydström J. Purification of a recombinant membrane protein tagged with a calmodulin-binding domain: properties of chimeras of the Escherichia coli nicotinamide nucleotide transhydrogenase and the C-terminus of human plasma membrane Ca2+ -ATPase. Protein Expr Purif 2005; 36:31-9. [PMID: 15177281 DOI: 10.1016/j.pep.2004.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/09/2004] [Indexed: 10/26/2022]
Abstract
A Ca2+ -dependent calmodulin-binding peptide (CBP) is an attractive tag for affinity purification of recombinant proteins, especially membrane proteins, since elution is simply accomplished by removing/chelating Ca2+. To develop a single-step calmodulin/CBP-dependent purification procedure for Escherichia coli nicotinamide nucleotide transhydrogenase, a 49 amino acid large CBP or a larger 149 amino acid C-terminal fragment of human plasma membrane Ca2+ -ATPase (hPMCA) was fused C-terminally to the beta subunit of transhydrogenase. Fusion using the 49 amino acid fragment resulted in a dramatic loss of transhydrogenase expression while fusion with the 149 amino acid fragment gave a satisfactory expression. This chimeric protein was purified by affinity chromatography on calmodulin-Sepharose with mild elution with EDTA. The purity and activity were comparable to those obtained with His-tagged transhydrogenase and showed an increased stability. CBP-tagged transhydrogenase contained a 4- to 10-fold higher amount of the alpha subunit relative to the beta subunit as compared to wild-type transhydrogenase. To determine whether the latter was due to the CBP tag, a double-tagged transhydrogenase with both an N-terminal 6x His-tag and a CBP-tag, purified by using either tag, gave no significant increase in purity as compared to the single-tagged protein. The reasons for the altered subunit composition are discussed. The results suggest that, depending on the construct, the CBP-tag may be a suitable affinity purification tag for membrane proteins in general.
Collapse
Affiliation(s)
- Maxim V Egorov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117871 Moscow
| | | | | | | | | | | | | |
Collapse
|
6
|
Weston CJ, Venning JD, Jackson JB. The membrane-peripheral subunits of transhydrogenase from Entamoeba histolytica are functional only when dimerized. J Biol Chem 2002; 277:26163-70. [PMID: 12004068 DOI: 10.1074/jbc.m203514200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike their bacterial and mammalian counterparts, the NADP(H)- and NAD(H)-binding components of proton-translocating transhydrogenase from the protozoan parasite Entamoeba histolytica (denoted ehdIII and ehdI, respectively) are tethered by a polypeptide linker. The recombinant tethered fragment, ehdIII-ehdI, was prepared without its membrane-spanning dII component. Dimers of ehdIII-ehdI catalyzed transhydrogenation, but monomers were inactive. The addition of ehdIII to ehdIII-ehdI monomers did not lead to an increase in the rate of transhydrogenation, showing that this inactivity is not the result of an unfavorable topology introduced by the linker. The addition of a bacterial dI to ehdIII-ehdI led to an increase in the rate of transhydrogenation, showing that the linker is flexible. A hybrid protein in which ehdIII is tethered to the bacterial dI (denoted ehdIII-rrdI) more readily formed active dimers. Data from small angle x-ray scattering by the hybrid dimers were fitted to models derived from the high-resolution crystal structure of the bacterial dI(2)dIII(1) complex (Cotton, N. P. J., White, S. A., Peake, S. J., McSweeney, S., and Jackson, J. B. (2001) Structure 9, 165-T176). The results show that the ehdIII-rrdI dimer is asymmetric; one dIII associates with dI, as in the bacterial complex, but the other is displaced. The results provide evidence for the alternating site, binding change model for proton translocation by intact transhydrogenase.
Collapse
Affiliation(s)
- Chris J Weston
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | |
Collapse
|
7
|
Pinheiro TJ, Venning JD, Jackson JB. Fast hydride transfer in proton-translocating transhydrogenase revealed in a rapid mixing continuous flow device. J Biol Chem 2001; 276:44757-61. [PMID: 11577115 DOI: 10.1074/jbc.m109227200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase couples the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. Coupling is achieved through changes in protein conformation. Upon mixing, the isolated nucleotide-binding components of transhydrogenase (dI, which binds NAD(H), and dIII, which binds NADP(H)) form a catalytic dI(2).dIII(1) complex, the structure of which was recently solved by x-ray crystallography. The fluorescence from an engineered Trp in dIII changes when bound NADP(+) is reduced. Using a continuous flow device, we have measured the Trp fluorescence change when dI(2).dIII(1) complexes catalyze reduction of NADP(+) by NADH on a sub-millisecond scale. At elevated NADH concentrations, the first-order rate constant of the reaction approaches 21,200 s(-1), which is larger than that measured for redox reactions of nicotinamide nucleotides in other, soluble enzymes. Rather high concentrations of NADH are required to saturate the reaction. The deuterium isotope effect is small. Comparison with the rate of the reverse reaction (oxidation of NADPH by NAD(+)) reveals that the equilibrium constant for the redox reaction on the complex is >36. This high value might be important in ensuring high turnover rates in the intact enzyme.
Collapse
Affiliation(s)
- T J Pinheiro
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
8
|
Venning JD, Rodrigues DJ, Weston CJ, Cotton NP, Quirk PG, Errington N, Finet S, White SA, Jackson JB. The heterotrimer of the membrane-peripheral components of transhydrogenase and the alternating-site mechanism of proton translocation. J Biol Chem 2001; 276:30678-85. [PMID: 11399770 DOI: 10.1074/jbc.m104429200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transhydrogenase undergoes conformational changes to couple the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. The protein comprises three components: dI, which binds NAD(H); dIII, which binds NADP(H); and dII, which spans the membrane. Experiments using isothermal titration calorimetry, analytical ultracentrifugation, and small angle x-ray scattering show that, as in the crystalline state, a mixture of recombinant dI and dIII from Rhodospirillum rubrum transhydrogenase readily forms a dI(2)dIII(1) heterotrimer in solution, but we could find no evidence for the formation of a dI(2)dIII(2) tetramer using these techniques. The asymmetry of the complex suggests that there is an alternation of conformations at the nucleotide-binding sites during proton translocation by the complete enzyme. The characteristics of nucleotide interaction with the isolated dI and dIII components and with the dI(2)dIII(1) heterotrimer were investigated. (a) The rate of release of NADP(+) from dIII was decreased 5-fold when the component was incorporated into the heterotrimer. (b) The binding affinity of one of the two nucleotide-binding sites for NADH on the dI dimer was decreased about 17-fold in the dI(2)dIII(1) complex; the other binding site was unaffected. These observations lend strong support to the alternating-site mechanism.
Collapse
Affiliation(s)
- J D Venning
- School of Biosciences, University of Birmingham, Edgbaston, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Bragg PD, Hou C. Characterization of mutants of beta histidine91, beta aspartate213, and beta asparagine222, possible components of the energy transduction pathway of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli. Arch Biochem Biophys 2001; 388:299-307. [PMID: 11368169 DOI: 10.1006/abbi.2001.2298] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The roles of three residues (betaHis91, betaAsp213, and betaAsn222) implicated in energy transduction in the membrane-spanning domain II of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli have been examined using site-directed mutagenesis. All mutations affected transhydrogenation and proton pumping activities, although to various extents. Replacing betaHis91 or betaAsn222 of domain II by the basic residues lysine or arginine resulted in occlusion of NADP(H) at the NADP(H)-binding site of domain III. This was not seen with betaD213K or betaD213R mutants. It is suggested that betaHis91 and betaAsn222 interact with betaAsp392, a residue probably involved in initiating conformational changes at the NADP(H)-binding site in the normal catalytic cycle of the enzyme (M. Jeeves et al. (2000) Biochim. Biophys. Acta 1459, 248-257). The introduced positive charges in the betaHis91 and betaAsn222 mutants might stabilize the carboxyl group of betaAsp392 in its anionic form, thus locking the NADP(H)-binding site in the occluded conformation. In comparison with the nonmutant enzyme, and those of mutants of betaAsp213, most mutant enzymes at betaHis91 and betaAsn222 bound NADP(H) more slowly at the NADP(H)-binding site. This is consistent with the effect of these two residues on the binding site. We could not demonstrate by mutation or crosslinking or through the formation of eximers with pyrene maleimide that betaHis91 and betaAsn222 were in proximity in domain II.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
10
|
Cotton NP, White SA, Peake SJ, McSweeney S, Jackson JB. The crystal structure of an asymmetric complex of the two nucleotide binding components of proton-translocating transhydrogenase. Structure 2001; 9:165-76. [PMID: 11250201 DOI: 10.1016/s0969-2126(01)00571-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Membrane-bound ion translocators have important functions in biology, but their mechanisms of action are often poorly understood. Transhydrogenase, found in animal mitochondria and bacteria, links the redox reaction between NAD(H) and NADP(H) to proton translocation across a membrane. Linkage is achieved through changes in protein conformation at the nucleotide binding sites. The redox reaction takes place between two protein components located on the membrane surface: dI, which binds NAD(H), and dIII, which binds NADP(H). A third component, dII, provides a proton channel through the membrane. Intact membrane-located transhydrogenase is probably a dimer (two copies each of dI, dII, and dIII). RESULTS We have solved the high-resolution crystal structure of a dI:dIII complex of transhydrogenase from Rhodospirillum rubrum-the first from a transhydrogenase of any species. It is a heterotrimer, having two polypeptides of dI and one of dIII. The dI polypeptides fold into a dimer. The loop on dIII, which binds the nicotinamide ring of NADP(H), is inserted into the NAD(H) binding cleft of one of the dI polypeptides. The cleft of the other dI is not occupied by a corresponding dIII component. CONCLUSIONS The redox step in the transhydrogenase reaction is readily visualized; the NC4 atoms of the nicotinamide rings of the bound nucleotides are brought together to facilitate direct hydride transfer with A-B stereochemistry. The asymmetry of the dI:dIII complex suggests that in the intact enzyme there is an alternation of conformation at the catalytic sites associated with changes in nucleotide binding during proton translocation.
Collapse
Affiliation(s)
- N P Cotton
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Hou C, Bragg PD. Intersubunit crosslinking of the heterotetrameric proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli defines intersubunit contacts between transmembrane helices of the beta subunits. Biochem Biophys Res Commun 2001; 280:466-70. [PMID: 11162540 DOI: 10.1006/bbrc.2000.4142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli is composed of two types of subunits, alpha and beta, organized as an alpha(2)beta(2) tetramer. The protein contains three recognizable domains, of which domain II is the transmembrane region of the molecule containing the pathway for proton translocation. Domain II is composed of four transmembrane helices at the carboxyl-terminus of the alpha subunit and nine transmembrane helices at the amino-terminal region of the beta subunit. We have introduced pairs of cysteine residues into all of the loops connecting the transmembrane helices of domain II of the beta subunit. Crosslinking between the two beta subunits of the tetramer was induced spontaneously, or by treatment with cupric 1,10-phenanthrolinate or o-phenylenedimaleimide. Crosslinks between pairs of betaA114C, betaS183C, and betaA262C residues were observed, suggesting that pairs of domain II transmembrane helices 11, 12, and 14 were in proximity. These results, together with previous data (Bragg and Hou (2000) Biochem. Biophys. Res. Commun. 273, 955-959) suggest that the transhydrogenase tetramer is formed by apposition of alpha(2) and beta(2) dimers. Crosslinking between pairs of cysteine residues in the same beta subunit was not observed, possibly because the interhelical loops of the domain II region of the beta subunit were too short to allow correct orientation of the sulfhydryl groups for crosslinking.
Collapse
Affiliation(s)
- C Hou
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3
| | | |
Collapse
|
12
|
Abstract
We have expressed and purified a protein fragment from Entamoeba histolytica. It catalyses transhydrogenation between analogues of NAD(H) and NADP(H). The characteristics of this reaction resemble those of the reaction catalysed by a complex of the NAD(H)- and NADP(H)-binding subunits of proton-translocating transhydrogenases from bacteria and mammals. It is concluded that the complete En. histolytica protein, which, along with similar proteins from other protozoan parasites, has an unusual subunit organisation, is also a proton-translocating transhydrogenase. The function of the transhydrogenase, thought to be located in organelles which do not have the enzymes of oxidative phosphorylation, is not clear.
Collapse
Affiliation(s)
- C J Weston
- School of Biosciences, University of Birmingham, P.O. Box 363, Edgbaston, B15 2TT, Birmingham, UK
| | | | | |
Collapse
|
13
|
Bizouarn T, Meuller J, Axelsson M, Rydström J. The transmembrane domain and the proton channel in proton-pumping transhydrogenases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:284-90. [PMID: 11004441 DOI: 10.1016/s0005-2728(00)00163-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Proton-pumping nicotinamide nucleotide transhydrogenases are composed of three main domains, the NAD(H)-binding and NADP(H)-binding hydrophilic domains I (dI) and III (dIII), respectively, and the hydrophobic domain II (dII) containing the assumed proton channel. dII in the Escherichia coli enzyme has recently been characterised with regard to topology and a packing model of the helix bundle in dII is proposed. Extensive mutagenesis of conserved charged residues of this domain showed that important residues are betaHis91 and betaAsn222. The pH dependence of betaH91D, as well as betaH91C (unpublished), when compared to that of wild type shows that reduction of 3-acetylpyridine-NAD(+) by NADPH, i.e., the reverse reaction, is optimal at a pH essentially coinciding with the pK(a) of the residue in the beta91 position. It is therefore concluded that the wild-type transhydrogenase is regulated by the degree of protonation of betaHis91. The mechanisms of the interactions between dI+dIII and dII are suggested to involve pronounced conformational changes in a 'hinge' region around betaR265.
Collapse
Affiliation(s)
- T Bizouarn
- Department of Biochemistry and Biophysics, Göteborg University, Sweden
| | | | | | | |
Collapse
|
14
|
Bragg PD, Hou C. The presence of an aqueous cavity in the proton-pumping pathway of the pyridine nucleotide transhydrogenase of Escherichia coli is suggested by the reaction of the enzyme with sulfhydryl inhibitors. Arch Biochem Biophys 2000; 380:141-50. [PMID: 10900143 DOI: 10.1006/abbi.2000.1923] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD(+) and NADP(+). The membrane domain (domain II) of the enzyme is composed of 13 transmembrane helices. Previous studies (N. A. Glavas et al., Biochemistry 34, 7694-7702, 1995) have suggested that betaHis91 in transmembrane helix 9 is involved in the translocation pathway of protons across the membrane. In this study we have replaced amino acid residues on the same face of helix 9 as betaHis91 by single cysteine residues. We then examined the effect of the sulfhydryl inhibitors N-ethylmaleimide (NEM) and p-chloromercuriphenylsulfonate (pCMPS) on enzyme activity and, in the case of [(14)C]NEM, as an enzyme label. The pattern of enzyme inhibition and labelling is consistent with the presence of an aqueous cavity through domain II from the cytosolic surface to the region of betaHis91. Residue betaAsn222 in helix 13, which appears also to be involved in the proton pathway across domain II, may interface with this aqueous cavity. A further series of mutants of betaGlu124 on helix 10 confirms the proposal (P. D. Bragg and C. Hou, Arch. Biochem. Biophys. 363, 182-190, 1999) that this residue is involved in passive permeation of protons across domain II.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | | |
Collapse
|
15
|
Bragg PD, Hou C. Crosslinking between alpha and beta subunits defines the orientation and spatial relationship of some of the transmembrane helices of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli. Biochem Biophys Res Commun 2000; 273:955-9. [PMID: 10891354 DOI: 10.1006/bbrc.2000.3037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli is composed of two types of subunits, alpha and beta, organized as an alpha(2)beta(2) tetramer. The protein contains three recognizable domains, of which domain II is the transmembrane region of the molecule containing the pathway for proton translocation. Domain II is composed of four transmembrane helices at the carboxyl-terminus of the alpha subunit and either eight or nine transmembrane helices at the amino-terminal region of the beta subunit. We have introduced pairs of cysteine residues into a cysteine-free transhydrogenase by site-directed mutagenesis. Disulfide bond formation between some of these cysteine residues occurred spontaneously or on treatment with cupric 1, 10-phenanthrolinate. Analysis of crosslinked products confirmed that there are nine transmembrane helices in the domain II region of the beta subunit. The proximity to one another of several of the transmembrane helices was determined. Thus, helices 2 and 4 are close to helix 6 (nomenclature of Meuller and Rydström, J. Biol. Chem. 274, 19072-19080, 1999), and helix 3 and the carboxyl-terminal eight residues of the alpha subunit are close to helix 7. In the alpha(2)beta(2) tetramer, helices 2 and 4 of one alpha subunit are close to the same pair of transmembrane helices of the other alpha subunit, and helix 6 of one beta subunit is close to helix 6 of the other beta subunit.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | | |
Collapse
|
16
|
Bizouarn T, Fjellström O, Meuller J, Axelsson M, Bergkvist A, Johansson C, Göran Karlsson B, Rydström J. Proton translocating nicotinamide nucleotide transhydrogenase from E. coli. Mechanism of action deduced from its structural and catalytic properties. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:211-28. [PMID: 10773166 DOI: 10.1016/s0005-2728(00)00103-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transhydrogenase couples the stereospecific and reversible transfer of hydride equivalents from NADH to NADP(+) to the translocation of proton across the inner membrane in mitochondria and the cytoplasmic membrane in bacteria. Like all transhydrogenases, the Escherichia coli enzyme is composed of three domains. Domains I and III protrude from the membrane and contain the binding site for NAD(H) and NADP(H), respectively. Domain II spans the membrane and constitutes at least partly the proton translocating pathway. Three-dimensional models of the hydrophilic domains I and III deduced from crystallographic and NMR data and a new topology of domain II are presented. The new information obtained from the structures and the numerous mutation studies strengthen the proposition of a binding change mechanism, as a way to couple the reduction of NADP(+) by NADH to proton translocation and occurring mainly at the level of the NADP(H) binding site.
Collapse
Affiliation(s)
- T Bizouarn
- Department of Biochemistry and Biophysics, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Recent developments have led to advances in our understanding of the structure and mechanism of action of proton-translocating (or AB) transhydrogenase. There is (a) a high-resolution crystal structure, and an NMR structure, of the NADP(H)-binding component (dIII), (b) a homology-based model of the NAD(H)-binding component (dI) and (c) an emerging consensus on the position of the transmembrane helices (in dII). The crystal structure of dIII, in particular, provides new insights into the mechanism by which the energy released in proton translocation across the membrane is coupled to changes in the binding affinities of NADP(+) and NADPH that drive the chemical reaction.
Collapse
Affiliation(s)
- J B Jackson
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.
| | | | | |
Collapse
|
18
|
Bragg PD, Hou C. Effect of NBD chloride (4-chloro-7-nitrobenzo-2-oxa-1,3-diazole) on the pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1413:159-71. [PMID: 10556628 DOI: 10.1016/s0005-2728(99)00090-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pyridine nucleotide transhydrogenases of bacterial cytosolic membranes and mitochondrial inner membranes are proton pumps in which hydride transfer between NADP(+) and NAD(+) is coupled to proton translocation across cytosolic or mitochondrial membranes. The pyridine nucleotide transhydrogenase of Escherichia coli is composed of two subunits (alpha and beta). Three domains are recognized. The extrinsic cytosolic domain 1 of the amino-terminal region of the alpha subunit bears the NAD(H)-binding site. The NADP(H)-binding site is present in domain 3, the extrinsic cytosolic carboxyl-terminal region of the beta subunit. Domain 2 is composed of the membrane-intrinsic carboxyl-terminal region of the alpha subunit and the membrane-intrinsic amino-terminal region of the beta subunit. Treatment of the transhydrogenase of E. coli with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD chloride) inhibited enzyme activity. Analysis of inhibition revealed that several sites on the enzyme were involved. NBD chloride modified two (betaCys-147 and betaCys-260) of the seven cysteine residues present in the transhydrogenase. Modification of betaCys-260 in domain 2 resulted in inhibition of enzyme activity. Modification of residues other than cysteine residues also resulted in inhibition of transhydrogenation as shown by use of a cysteine-free mutant enzyme. The beta subunit was modified by NBD chloride to a greater extent than the alpha subunit. Reaction of domain 2 and domain 3 was prevented by NADPH. Modification of domain 3 is probably not associated with inhibition of enzyme activity. Modification of domain 2 of the beta subunit resulted in a decreased binding affinity for NADPH at its binding site in domain 3. The product resulting from the reaction of NBD chloride with NADPH was a very effective inhibitor of transhydrogenation. In experiments with NBD chloride in the presence of NADPH it is likely that all of the sites of reaction described above will contribute to the inhibition observed. The NBD-NADPH adduct will likely be more useful than NBD chloride in investigations of the pyridine nucleotide transhydrogenase.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, B.C., Canada.
| | | |
Collapse
|
19
|
Bragg PD, Hou C. Mutation of conserved polar residues in the transmembrane domain of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia coli. Arch Biochem Biophys 1999; 363:182-90. [PMID: 10049513 DOI: 10.1006/abbi.1998.1062] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pyridine nucleotide transhydrogenase carries out transmembrane proton translocation coupled to transfer of a hydride ion equivalent between NAD+ and NADP+. Previous workers (E. Holmberg et al. Biochemistry 33, 7691-7700, 1994; N. A. Glavas et al. Biochemistry 34, 7694-7702, 1995) had examined the role in proton translocation of conserved charged residues in the transmembrane domain. This study was extended to examine the role of conserved polar residues of the transmembrane domain. Site-directed mutagenesis of these residues did not produce major effects on hydride transfer or proton translocation activities except in the case of betaAsn222. Most mutants of this residue were drastically impaired in these activities. Three phenotypes were recognized. In betaN222C both activities were impaired maximally by 70%. The retention of proton translocation indicated that betaAsn222 was not directly involved in proton translocation. In betaN222H both activities were drastically reduced. Binding of NADP+ but not of NADPH was impaired. In betaN222R, by contrast, NADP+ remained tightly bound to the mutant transhydrogenase. It is concluded that betaAsn222, located in a transmembrane alpha-helix, is part of the conformational pathway by which NADP(H) binding, which occurs outside of the transmembrane domain, is coupled to proton translocation. Some nonconserved or semiconserved polar residues of the transmembrane domain were also examined by site-directed mutagenesis. Interaction of betaGlu124 with the proton translocation pathway is proposed.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | | |
Collapse
|
20
|
Bragg PD, Hou C. Effect of truncation and mutation of the carboxyl-terminal region of the beta subunit on membrane assembly and activity of the pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:464-72. [PMID: 9711299 DOI: 10.1016/s0005-2728(98)00100-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli is a proton pump composed of two different subunits (alpha and beta) assembled as a tetramer (alpha 2 beta 2) in the cytoplasmic membrane. A series of mutants was generated in which the carboxyl-terminal region of the beta subunit was progressively truncated. Removal of the two carboxyl-terminal amino acid residues prevented incorporation of the enzyme into the cytoplasmic membrane. Deletion of the carboxyl-terminal amino acid allowed incorporation of the alpha subunit to near normal levels, but the amount of the beta subunit was much decreased. It is concluded that, although the alpha subunit can be incorporated into the cytoplasmic membrane without the beta subunit, the carboxyl-terminal region of the beta subunit is involved in determining the correct conformation of the alpha subunit for assembly. The carboxyl-terminal amino acid of the beta subunit, beta Leu462, and the penultimate residue, beta Ala461, were individually mutated and the effect on two transhydrogenase activities determined. The reduction of 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADPH, and by NADH in the presence of NADP+, was decreased maximally by about 60%. The reduction of AcPyAD+ by NADH in the absence of NADP+ was decreased to a greater extent. Most mutants of beta Leu462 showed at least an 80% reduction in activity as well as abnormal kinetics. The abnormal kinetics were explored in the beta A461P mutant and were attributed to tighter binding of the product AcPyADH. This compound competed with NADP+ at the NADP(H)-binding site. It is concluded that the carboxyl-terminal region of the beta subunit contributes to the NADP(H)-binding site on this subunit.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| | | |
Collapse
|
21
|
Bragg PD. Site-directed mutagenesis of the proton-pumping pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1365:98-104. [PMID: 9693728 DOI: 10.1016/s0005-2728(98)00049-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+ coupled to the translocation of protons across the cytoplasmic membrane. It is composed of two subunits (alpha, beta) organized as an alpha 2 beta 2 tetramer. This brief review describes the use of site-directed mutagenesis to investigate the structure, mechanism and assembly of the transhydrogenase. This technique has located the binding sites for NAD(H) and NADP(H) in the alpha and beta subunits, respectively. Mutagenesis has shown that the cysteine residues of the enzyme are not essential for its function, and that inhibition of the enzyme by sulfhydryl-specific reagents must be due to perturbation of the three-dimensional structure. The sites of reaction of the inhibitors N,N'-dicyclohexylcarbodiimide and N-(1-pyrene)maleimide have been located. Selective mutation and insertion of cysteine residues followed by cupric o-phenanthrolinate-induced disulfide crosslinking has defined a region of interaction between the alpha subunits in the holoenzyme. Determination of the accessibility of selectively inserted cysteine residues has been used to determine the folding pattern of the transmembrane helices of the beta subunit. Site-directed mutagenesis of the transmembrane domain of the beta subunit has permitted the identification of histidine, aspartic acid and asparagine residues which are part of the proton-pumping pathway of the transhydrogenase. Site-directed mutagenesis and amino acid deletions have shown that the six carboxy terminal residues of the alpha subunit and the two carboxy terminal residues of the beta subunit are necessary for correct assembly of the transhydrogenase in the cytoplasmic membrane.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
22
|
Trchounian A. Ion Exchange in Facultative Anaerobes: Does a Proton-potassium Pump Exist in AnaerobicEscherichia Coli? Anaerobe 1997; 3:355-71. [PMID: 16887611 DOI: 10.1006/anae.1997.0122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/1997] [Accepted: 05/27/1997] [Indexed: 11/22/2022]
Affiliation(s)
- A Trchounian
- Department of Biophysics, Biological Faculty of Yerevan State University, 375049, Yerevan, Armenia.
| |
Collapse
|
23
|
Bragg PD. Mechanism of hydride transfer during the reduction of 3-acetylpyridine adenine dinucleotide by NADH catalyzed by the pyridine nucleotide transhydrogenase of Escherichia coli. FEBS Lett 1996; 397:93-6. [PMID: 8941721 DOI: 10.1016/s0014-5793(96)01147-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pyridine nucleotide transhydrogenase is a proton pump which catalyzes the reversible transfer of a hydride ion equivalent between NAD+ and NADP+ coupled to translocation of protons across the cytoplasmic membrane. The enzyme also catalyzes the reduction of the NAD+ analog 3-acetylpyridine adenine dinucleotide (AcPyAD+) by NADH. It has been proposed (Hutton et al. (1994) Eur. J. Biochem. 219, 1041-1051) that this reaction requires NADP(H) as an intermediate. Thus, NADP+ bound at the NADP(H)-binding site on the transhydrogenase would be reduced by NADH and reoxidized by AcPyAD+ binding alternately to the NAD(H)-binding site. The reduction of AcPyAD+ by NADPH would be a partial reaction in the reduction of AcPyAD+ by NADH. Using cytoplasmic membrane vesicles from mutants having elevated activities for transhydrogenation of AcPyAD+ by NADH in the absence of added NADP(H), the kinetics of reduction of AcPyAD+ by NADH and NADPH have been compared. The Km values for the reductants NADPH and NADH over a range of mutants, and for the non-mutant enzyme, differed to a much lesser degree than the Km for AcPyAD+ in the two reactions. The Km(AcPyAD) values for the transhydrogenation of AcPyAD+ by NADH were over an order of magnitude greater than those for the transhydrogenation of AcPyAD+ by NADPH. It is unlikely that AcPyAD+ binds at the same site in both reactions. A plausible explanation is that this substrate binds to the NADP(H)-binding site for transhydrogenation by NADH. Thus, a hydride equivalent can be transferred directly between NADH and AcPyAD+ under these conditions.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
24
|
Bragg PD, Hou C. The role of conserved histidine residues in the pyridine nucleotide transhydrogenase of Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:611-8. [PMID: 8917463 DOI: 10.1111/j.1432-1033.1996.00611.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+, coupled to translocation of protons across the cytoplasmic membrane. The role of histidine residues in catalysis was investigated by chemical modification with diethylpyrocarbonate and by site-directed mutagenesis. Diethylpyrocarbonate inhibited both hydride ion transfer and coupled proton translocation. Histidine residues were modified as shown spectroscopically and by the ability of hydroxylamine to cause reversal of inhibition. Complete inhibition of hydride ion transfer occurred following modification of 10 residues/enzyme molecule. Site-directed mutagenesis of single conserved histidine residues or the presence of substrates did not provide resistance to inhibition by diethylpyrocarbonate. It is concluded that diethylpyrocarbonate inhibition was a consequence of the structural changes brought about by modification of many histidine residues. With the exception of beta-subunit residue His91 (beta His91), in which mutation can result in specific loss of proton translocation activity [Glavas, N. A., Hou, C. & Bragg, P. D. (1995) Biochemistry 34, 7694-7702], site-directed mutation of the remaining conserved residues alpha His450, beta His161, beta His345 and beta His354 did not demonstrate a direct role for these residues in catalysis. Mutation of beta His161 had relatively little effect on the properties of the enzyme. By contrast, mutation of alpha His450, beta His345 and beta His354 caused major loss of enzyme activities which was probably due to alterations in the structure of the enzyme. These alterations were reflected in changes in the K(m) values for transhydrogenation.
Collapse
Affiliation(s)
- P D Bragg
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
25
|
Yamaguchi M, Hatefi Y. Proton-translocating nicotinamide nucleotide transhydrogenase. Reconstitution of the extramembranous nucleotide-binding domains. J Biol Chem 1995; 270:28165-8. [PMID: 7499307 DOI: 10.1074/jbc.270.47.28165] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nicotinamide nucleotide transhydrogenase of bovine mitochondria is a homodimer of monomer M(r) = 109,065. The monomer is composed of three domains, an NH2-terminal 430-residue-long hydrophilic domain I that binds NAD(H), a central 400-residue-long hydrophobic domain II that is largely membrane intercalated and carries the enzyme's proton channel, and a COOH-terminal 200-residue-long hydrophilic domain III that binds NADP(H). Domains I and III protrude into the mitochondrial matrix, where they presumably come together to form the enzyme's catalytic site. The two-subunit transhydrogenase of Escherichia coli and the three-subunit transhydrogenase of Rhodospirillum rubrum have each the same overall tridomain hydropathy profile as the bovine enzyme. Domain I of the R. rubrum enzyme (the alpha 1 subunit) is water soluble and easily removed from the chromatophore membranes. We have isolated domain I of the bovine transhydrogenase after controlled trypsinolysis of the purified enzyme and have expressed in E. coli and purified therefrom domain III of this enzyme. This paper shows that an active bidomain transhydrogenase lacking domain II can be reconstituted by the combination of purified bovine domains I plus III or R. rubrum domain I plus bovine domain III.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
26
|
Glavas NA, Bragg PD. The mechanism of hydride transfer between NADH and 3-acetylpyridine adenine dinucleotide by the pyridine nucleotide transhydrogenase of Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:297-303. [PMID: 7578217 DOI: 10.1016/0005-2728(95)00089-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli catalyzes the reversible transfer of hydride ion equivalents between NAD+ and NADP+ coupled to translocation of protons across the cytoplasmic membrane. Recently, transhydrogenation of 3-acetylpyridine adenine dinucleotide (AcPyAD+), an analog of NAD+, by NADH has been described using a solubilized preparation of E. coli transhydrogenase [Hutton, M., Day, J.M., Bizouarn, T., and Jackson, J.B. (1994) Eur. J. Biochem. 219, 1041-1051]. This reaction depended on the presence of NADP(H). We show that (a) this reaction did not require NADP(H) at pH 6 in contrast to pH 8; (b) the reaction occurred at pH 8 in the absence of NADP(H) in the mutant beta H91K and in a mutant in which six amino acids of the carboxy-terminus of the alpha subunit had been deleted; (c) the mutant transhydrogenases contained bound NADP+ and were in a conformation in which the beta subunit was digestible by trypsin; (d) the conformation of the beta subunit of the wild-type enzyme was made susceptible to trypsin digestion by NADP(H) or by placing the enzyme at pH 6 in the absence of NADP(H). It is concluded that reduction of AcPyAD+ by NADH does not involve NADPH as an intermediate and that the role of NADP(H) in this reaction at pH 8 is to cause the transhydrogenase to adopt a conformation favouring transhydrogenation between NADH and AcPyAD+.
Collapse
Affiliation(s)
- N A Glavas
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
27
|
Olausson T, Fjellström O, Meuller J, Rydström J. Molecular biology of nicotinamide nucleotide transhydrogenase--a unique proton pump. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1231:1-19. [PMID: 7640288 DOI: 10.1016/0005-2728(95)00058-q] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- T Olausson
- Department of Biochemistry and Biophysics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | | |
Collapse
|
28
|
Yamaguchi M, Hatefi Y. Proton-translocating nicotinamide nucleotide transhydrogenase of Escherichia coli. Involvement of aspartate 213 in the membrane-intercalating domain of the beta subunit in energy transduction. J Biol Chem 1995; 270:16653-9. [PMID: 7622474 DOI: 10.1074/jbc.270.28.16653] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mutations in the beta subunit of Escherichia coli proton-translocating nicotinamide nucleotide transhydrogenase of the conserved residue beta Asp-213 to Asn (beta D213N) and Ile (beta D213I) resulted in the loss, respectively, of about 70% and 90% NADPH-->3-acetylpyridine adenine dinucleotide (AcPyAD) transhydrogenation and coupled proton translocation activities. However, the cyclic NADP(H)-dependent NADH-->AcPyAD transhydrogenase activities of the mutants were only approximately 35% inhibited. The latter transhydrogenation, which is not coupled to proton translocation, occurs apparently via NADP under conditions that enzyme-NADP(H) complex is stabilized. Mutations beta D213N and beta D213I also resulted in decreases in apparent KmNADPH for the NADPH-->AcPyAD and S0.5NADPH (NADPH concentration needed for half-maximal activity) for the cyclic NADH-->AcPyAD transhydrogenation reactions, and in KdNADPH, as determined by equilibrium binding studies on the purified wild-type and the beta D213I mutant enzymes. These results point to a structural role of beta Asp-213 in energy transduction and are discussed in relation to our previous suggestion that proton translocation coupled to NADPH-->NAD (or AcPyAD) transhydrogenation is driven mainly by the difference in the binding energies of NADPH and NADP.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
29
|
Diggle C, Hutton M, Jones GR, Thomas CM, Jackson JB. Properties of the soluble polypeptide of the proton-translocating transhydrogenase from Rhodospirillum rubrum obtained by expression in Escherichia coli. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 228:719-26. [PMID: 7737169 DOI: 10.1111/j.1432-1033.1995.tb20315.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Transhydrogenase, which catalyses the reduction of NADP+ by NADH coupled to proton translocation across a membrane, may be unique in the photosynthetic bacterium Rhodospirillum rubrum. Unlike the homologous enzyme from animal mitochondria and other bacterial sources, it has a water-soluble polypeptide, which exists as a dimer (Ths), that can be reversibly dissociated from the membrane component [Williams, R., Cotton, N. P. J., Thomas, C. M. & Jackson, J. B. (1994) Microbiology, 140, 1595-1604]. We have expressed the gene for Ths in cells of Escherichia coli under control of the tac promoter and a strong ribosome binding site. The protein, purified by column chromatography, fully reconstituted transhydrogenation activity to everted membrane vesicles of Rhs. rubrum that had been washed to remove Ths. The purified expressed protein was prepared in quantities over 100-fold greater than were obtained from wild-type Rhs. rubrum. The fluorescence spectrum of purified expressed Ths had an intense and unusually short wavelength emission maximum at 310 nm with shoulders at 298 and 322 nm. Time-resolved measurements indicated that the fluorescence decay was almost monoexponential with a lifetime of 5.2 ns. On denaturation with 4 M guanidine hydrochloride, the emission band shifted to 352 nm and decreased in intensity. In the native protein, the fluorophore was relatively inaccessible to quenching solutes, such as iodide ions and acrylamide. It is concluded that the fluorescence emission arises mainly from the single tryptophan residue of Ths (Trp72), which is locked into a rigid conformation and is located in highly non-polar environment. The 310-nm fluorescence of Ths was quenched by NADH, maximally to 46%. The apparent binding constant was 18 microM. The fluorescence of Ths-bound NADH was enhanced relative to the nucleotide in free solution and its emission maximum was shifted to a shorter wavelength (440 nm). These data support previous indications that the NADH binding site is located in domain I of proton-translocating transhydrogenase. Excitation of Ths at 280 nm did not lead to sensitized emission at 440 nm from bound NADH. This indicates that the quenching of fluorescence of Ths by NADH does not result from resonance energy transfer from Trp72 to the bound nucleotide. NAD+, NADP+ and NADPH had little effect on the protein fluorescence. The kinetics of quenching of Ths fluorescence by NADH were examined after mixing in a stopped-flow device. The 'on' rate constant for nucleotide binding was approximately 8 x 10(6) M-1 s-1 and the 'off' constant approximately 150 s-1.
Collapse
Affiliation(s)
- C Diggle
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|
30
|
Yamaguchi M, Hatefi Y. Energy-transducing nicotinamide nucleotide transhydrogenase: nucleotide sequences of the genes and predicted amino acid sequences of the subunits of the enzyme from Rhodospirillum rubrum. J Bioenerg Biomembr 1994; 26:435-45. [PMID: 7844118 DOI: 10.1007/bf00762784] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Based on the amino acid sequence of the N-terminus of the soluble subunit of the Rhodospirillum rubrum nicotinamide nucleotide transhydrogenase, two oligonucleotide primers were synthesized and used to amplify the corresponding DNA segment (110 base pairs) by the polymerase chain reaction. Using this PCR product as a probe, one clone with the insert of 6.4 kbp was isolated from a genomic library of R. rubrum and sequenced. This sequence contained three open reading frames, constituting the genes nntA1, nntA2, and nntB of the R. rubrum transhydrogenase operon. The polypeptides encoded by these genes were designated alpha 1, alpha 2, and beta, respectively, and are considered to be the subunits of the R. rubrum transhydrogenase. The predicted amino acid sequence of the alpha 1 subunit (384 residues; molecular weight 40276) has considerable sequence similarity to the alpha subunit of the Escherichia coli and the N-terminal 43-kDa segment of the bovine transhydrogenases. Like the latter, it has a beta alpha beta fold in the corresponding region, and the purified, soluble alpha 1 subunit cross-reacts with antibody to the bovine N-terminal 43-kDa fragment. The predicted amino acid sequence of the beta subunit of the R. rubrum transhydrogenase (464 residues; molecular weight 47808) has extensive sequence identity with the beta subunit of the E. coli and the corresponding C-terminal sequence of the bovine transhydrogenases. The chromatophores of R. rubrum contain a 48-kDa polypeptide, which cross-reacts with antibody to the C-terminal 20-kDa fragment of the bovine transhydrogenase. The predicted amino acid sequence of the alpha 2 subunit of the R. rubrum enzyme (139 residues; molecular weight 14888) has considerable sequence identity in its C-terminal half to the corresponding segments of the bovine and the alpha subunit of the E. coli transhydrogenases.
Collapse
Affiliation(s)
- M Yamaguchi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037
| | | |
Collapse
|
31
|
Holmberg E, Olausson T, Hultman T, Rydström J, Ahmad S, Glavas NA, Bragg PD. Prediction and site-specific mutagenesis of residues in transmembrane alpha-helices of proton-pumping nicotinamide nucleotide transhydrogenases from Escherichia coli and bovine heart mitochondria. Biochemistry 1994; 33:7691-700. [PMID: 8011636 DOI: 10.1021/bi00190a024] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nicotinamide nucleotide transhydrogenase from bovine heart consists of a single polypeptide of 109 kD. The complete gene for this transhydrogenase was constructed, and the protein primary structure was determined from the cDNA. As compared to the previously published sequences of partially overlapping clones, three residues differed: Ala591 (previously Phe), Val777 (previously Glu), and Ala782 (previously Arg). The Escherichia coli transhydrogenase consists of an alpha subunit of 52 kD and a beta subunit of 48 kD. Alignment of the protein primary structure of the bovine trashydrogenase with that of the transhydrogenase from E. coli showed an identity of 52%, indicating similarly folded structures. Prediction of transmembrane-spanning alpha-helices, obtained by applying several prediction algorithms to the primary structures of the revised bovine heart and E. coli transhydrogenases, yielded a model containing 10 transmembrane alpha-helices in both transhydrogenases. In E. coli transhydrogenase, four predicted alpha-helices were located in the alpha subunit and six alpha-helices were located in the beta subunit. Various conserved amino acid residues of the E. coli transhydrogenase located in or close to predicted transmembrane alpha-helixes were replaced by site-specific mutagenesis. Conserved negatively charged residues in predicted transmembrane alpha-helices possibly participating in proton translocation were identified as beta Glu82 (Asp655 in the bovine enzyme) and beta Asp213 (asp787 in the bovine enzyme) located close to the predicted alpha-helices 7 and 9 of the beta subunit. beta Glu82 was replaced by Lys or Gln and beta Asp213 by Asn or His. However, the catalytic as well as the proton pumping activity was retained. In contrast, mutagenesis of the conserved beta His91 residue (His664 in the bovine enzyme) to Ser, Thr, and Cys gave an essentially inactive enzyme. Mutation of alpha His450 (corresponding to His481 in the bovine enzyme) to Thr greatly lowered catalytic activity without abolishing proton pumping. Since no other conserved acidic or basic residues were predicted in transmembrane alpha-helices regardless of the prediction algorithm used, proton translocation by transhydrogenase was concluded to involve a basic rather than an acidic residue. The only conserved cysteine residue, beta Cys260 (Cys834 in the bovine enzyme), located in the predicted alpha-helix 10 of the E. coli transhydrogenase, previously suggested to function as a redox-active dithiol, proved not to be essential, suggesting that redox-active dithiols do not play a role in the mechanism of transhydrogenase.
Collapse
Affiliation(s)
- E Holmberg
- Biochemistry Department, Kabi Pharmacia, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
32
|
Bizouarn T, Jackson JB. The ratio of protons translocated/hydride ion equivalent transferred by nicotinamide nucleotide transhydrogenase in chromatophores from Rhodospirillum rubrum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 217:763-70. [PMID: 8223619 DOI: 10.1111/j.1432-1033.1993.tb18304.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The reduction of acetylpyridine adenine dinucleotide (AcPdAD+, an NAD+ analogue) by NADPH, in chromatophores treated with valinomycin, was accompanied by alkalinisation of the external medium, as measured by the absorbance change of added cresol red, a simple, non-binding pH indicator. Experiments with a stopped-flow spectrophotometer showed that initial (linear) rates of alkalinisation persisted for 1-2s. From the results of experiments in which H+ uptake was driven by a series of short flashes of light, the dependence of the outward proton leak on the extent of H+ uptake was established. Thus, the proton leak was subtracted from the initial rate of alkalinisation during transhydrogenation to give the true proton-uptake rate. The correction factor was usually about 10%. The ratio of protons translocated/H- transferred from NADPH to AcPdAD+ (the H+/H- ratio) was 0.60 +/- 0.06. The transhydrogenation reaction between NAD+ and NADPH was measured in the presence of a regeneration system for NAD+ (pyruvate and lactate dehydrogenase). In addition to the accompanying proton-translocation reaction, scalar H+ consumption linked to the regeneration system was observed and permitted internal checks on the calibration of the cresol red absorbance changes. After correction for the proton leak and scalar proton uptake, an H+/H- ratio of 0.60 +/- 0.30 was calculated from the initial rates. The water-soluble polypeptide of transhydrogenase (Ths) was washed from a sample of chromatophores to inhibit transhydrogenation activity and the accompanying H+ uptake. Re-addition of purified Ths to depleted chromatophores led to recovery of transhydrogenation activity and of H+ uptake. In this reconstituted system the H+/H- was similar to that in the native membranes. These results make it unlikely that the H+/H- ratio is artefactually low because chromatophores have a population of transhydrogenase which is not coupled to proton translocation. Further evidence that the mechanistic H+/H- ratio of chromatophore transhydrogenase is less than 1 was provided by an analysis of the kinetics of alkalinisation of the medium during reduction of AcPdAD+ by NADPH. It was shown that the progress of the transhydrogenation-induced alkalinisation was fitted by the sum of H+ uptake (the rate of transhydrogenation multiplied by the H+/H- ratio) plus the H+ leak, when the ratio was 0.6 but not when it was 1.0. The results are discussed in terms of the possible mechanism of energy coupling by transhydrogenase.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T Bizouarn
- School of Biochemistry, University of Birmingham, England
| | | |
Collapse
|
33
|
Yamaguchi M, Hatefi Y. Energy-transducing nicotinamide nucleotide transhydrogenase. Nucleotide binding properties of the purified enzyme and proteolytic fragments. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(17)46785-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
34
|
Ormö M, Persson B, Rydström J. Correlation between active form and dimeric structure of mitochondrial nicotinamide nucleotide transhydrogenase from beef heart. J Bioenerg Biomembr 1992; 24:611-5. [PMID: 1459991 DOI: 10.1007/bf00762353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The active form of purified mitochondrial nicotinamide nucleotide transhydrogenase from beef heart was investigated by crosslinking with dimethylsuberimidate and SDS-PAGE, with or without pretreatment with the inactivating detergent Triton X-100. In the absence of detergent, crosslinked isomers of the dimeric form of 208-235 kDa were obtained. Addition of detergent led to the simultaneous loss of the dimers and the bulk of the activity. Removal of the detergent led to a partial restoration of both activity and the dimeric forms. The results suggest that the active form is a dimer, and that the detergent-dependent conversion to the largely inactive monomer is reversible. It is proposed that the mechanism of inactivation of transhydrogenase by Triton X-100 involves a disruption of essential hydrophobic interactions between the membrane-spanning regions of the monomers.
Collapse
Affiliation(s)
- M Ormö
- Department of Molecular Biology, University of Stockholm, Sweden
| | | | | |
Collapse
|
35
|
Ahmad S, Glavas NA, Bragg PD. A mutation at Gly314 of the beta subunit of the Escherichia coli pyridine nucleotide transhydrogenase abolishes activity and affects the NADP(H)-induced conformational change. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 207:733-9. [PMID: 1633824 DOI: 10.1111/j.1432-1033.1992.tb17103.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Escherichia coli RH1 contains a mutation causing complete loss of pyridine nucleotide transhydrogenase activity. A single base change in the chromosomal DNA resulted in the replacement of Gly314 of the beta subunit by a Glu residue. The mutant enzyme was partially purified and its trypsin cleavage products examined. The distinct pattern of polypeptides given by proteolysis of the normal transhydrogenase in the presence of NADP(H) was absent when the mutant enzyme was treated with trypsin. However, the beta subunit of the mutant enzyme retained its ability to bind to NAD-agarose. Further substitutions were made at Gly314 converting it to Ala, Val or Cys by the use of site-directed mutagenesis. All substitutions for Gly314 abolished the activity completely. The enzyme containing the Gly314----Ala mutation was studied in detail and behaved exactly as the enzyme containing the Gly314----Glu mutation. It is concluded that the mutation in the beta subunit abolished the NADP(H)-induced conformational change in the mutant enzyme. This conformational change, caused by NADP(H) binding, is required to cleave the normal beta subunit at Arg265 by trypsin. The genes encoding the pyridine nucleotide transhydrogenase were completely resequenced and several corrections have been made to the previously published sequence [Clarke et al. (1986) Eur. J. Biochem. 158, 647-653].
Collapse
Affiliation(s)
- S Ahmad
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
36
|
Cunningham IJ, Williams R, Palmer T, Thomas CM, Jackson JB. The relation between the soluble factor associated with H(+)-transhydrogenase of Rhodospirillum rubrum and the enzyme from mitochondria and Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1100:332-8. [PMID: 1610876 DOI: 10.1016/0167-4838(92)90490-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although in mitochondria, Escherichia coli and Rhodobacter capsulatus the H(+)-transhydrogenases are intrinsic membrane proteins, in Rhodospirillum rubrum a water-soluble component (Ths) and a membrane-bound component are together required for activity. Ths was selectively removed from chromatophore membranes of Rhs. rubrum and was purified to homogeneity by precipitation with (NH4)2SO4 and ion-exchange, affinity dye and gel exclusion chromatography. The latter indicated an Mr of approx. 74,000 under non-denaturing conditions but analysis of the pure protein by SDS-PAGE revealed a single polypeptide, Mr 43,000. Antibodies against this polypeptide inhibited transhydrogenase activity of chromatophores and decreased the capacity of Ths to restore activity to depleted membranes. They reacted with a polypeptide of Mr 43,000 in crude cell extract, chromatophore membranes and chromatophore washings but not with transhydrogenase polypeptides from the membranes of E. coli, Rb. capsulatus or animal mitochondria. The N-terminal amino acid sequence of the 43,000 polypeptide was strongly homologous with the reported N-terminal regions of mitochondrial transhydrogenase and the alpha subunit of the E. coli protein. The break between the alpha and beta polypeptides of E. coli transhydrogenase is such that both components are membrane-associated. In contrast, these results suggest that in the Rhs. rubrum enzyme Ths has been formed by a break closer to the N-terminus, thus avoiding the putative trans-membrane helical segments and yielding a relatively hydrophilic subunit, which is water-soluble. There is a predicted similarity between Ths and the reported sequence of alanine dehydrogenase from Bacillus but Ths did not have any alanine dehydrogenase activity.
Collapse
|
37
|
Ahmad S, Glavas N, Bragg P. Subunit interactions involved in the assembly of pyridine nucleotide transhydrogenase in the membranes of Escherichia coli. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50528-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Chang DY, Hou C, Bragg PD. Anomalous effect of uncouplers on respiratory chain-linked transhydrogenation in Escherichia coli membranes: evidence for a localized proton pathway? Arch Biochem Biophys 1992; 293:246-53. [PMID: 1311161 DOI: 10.1016/0003-9861(92)90392-a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Energization of the pyridine nucleotide transhydrogenase in everted membrane vesicles from Escherichia coli JM83 was compared with the process in vesicles of the same strain transformed with the plasmid pDC21 overexpressing this enzyme. Proton translocation was assayed by the quenching of the fluorescence of the probe quinacrine. Agents able to discharge transmembrane proton gradients such as nigericin and the uncouplers 3,3',4',5-tetrachlorosalicylanilide and carbonyl cyanide m-chlorophenylhydrazone inhibited ATP-dependent transhydrogenation of NADP by NADH and discharged transmembrane proton gradients generated by transhydrogenation of AcNAD by NADPH, by oxidation of NADH, and by hydrolysis of ATP. This was observed in everted membrane vesicles of both strains JM83 and JM83pDC21. These strains differed significantly in the response of the NADH oxidation-dependent transhydrogenase. This reaction was inhibited by nigericin and uncouplers in membrane vesicles of JM83 but there was little inhibition or the reaction was stimulated in JM83pDC21, in spite of the discharge of the NADH oxidation-generated proton gradient measured by quinacrine fluorescence in the latter strain. It is proposed that the transhydrogenase is energized by direct or local (nonbulk phase) proton translocation in membranes of this strain. Uncouplers might facilitate these routes but would not discharge them. The generality of these observations was shown using other strains. NADH oxidase activity was severalfold lower in membrane vesicles of JM83pDC21 compared with JM83. The levels of ubiquinone and cytochromes, and the activities of NADH dehydrogenases I and II, and of cytochrome oxidase, were similar in the two strains. It is concluded that the NADH oxidase activity of JM83pDC21 is low because of the reduced rate of collision between electron-transferring complexes of the respiratory chain due to the large amount of transhydrogenase protein in the membranes of this strain. The large amount of transhydrogenase favors direct, nonbulk phase proton transfer. Transhydrogenase activity was stimulated by Ca2+, Mg2+, or Mn2+.
Collapse
Affiliation(s)
- D Y Chang
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
39
|
Palmer T, Baz Jackson J. Nicotinamide nucleotide transhydrogenase from Rhodobacter capsulatus; the H+H− ratio and the activation state of the enzyme during reduction of acetyl pyridine adenine dinucleotide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90213-l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
40
|
Chapter 11 The energy-transducing nicotinamide nucleotide transhydrogenase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60179-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
41
|
Tong RC, Glavas NA, Bragg PD. Topological analysis of the pyridine nucleotide transhydrogenase of Escherichia coli using proteolytic enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1080:19-28. [PMID: 1932078 DOI: 10.1016/0167-4838(91)90106-a] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pyridine nucleotide transhydrogenase of Escherichia coli has an alpha 2 beta 2 structure (alpha: Mr, 54,000; beta: Mr, 48,700). Hydropathy analysis of the amino acid sequences suggested that the 10 kDa C-terminal portion of the alpha subunit and the N-terminal 20-25 kDa region of the beta subunit are composed of transmembranous alpha-helices. The topology of these subunits in the membrane was investigated using proteolytic enzymes. Trypsin digestion of everted cytoplasmic membrane vesicles released a 43 kDa polypeptide from the alpha subunit. The beta subunit was not susceptible to trypsin digestion. However, it was digested by proteinase K in everted vesicles. Both alpha and beta subunits were not attacked by trypsin and proteinase K in right-side out membrane vesicles. The beta subunit in the solubilized enzyme was only susceptible to digestion by trypsin if the substrates NADP(H) were present. NAD(H) did not affect digestion of the beta subunit. Digestion of the beta subunit of the membrane-bound enzyme by trypsin was not induced by NADP(H) unless the membranes had been previously stripped of extrinsic proteins by detergent. It is concluded that binding of NADP(H) induces a conformational change in the transhydrogenase. The location of the trypsin cleavage sites in the sequences of the alpha and beta subunits were determined by N- and C-terminal sequencing. A model is proposed in which the N-terminal 43 kDa region of the alpha subunit and the C-terminal 30 kDa region of the beta subunit are exposed on the cytoplasmic side of the inner membrane of E. coli. Binding sites for pyridine nucleotide coenzymes in these regions were suggested by affinity chromatography on NAD-agarose columns.
Collapse
Affiliation(s)
- R C Tong
- Department of Biochemistry, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
42
|
Jackson JB. The proton-translocating nicotinamide adenine dinucleotide transhydrogenase. J Bioenerg Biomembr 1991; 23:715-41. [PMID: 1660871 DOI: 10.1007/bf00785998] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
H(+)-transhydrogenase couples the reversible transfer of hydride ion equivalents between NAD(H) and NADP(H) to the translocation of protons across a membrane. There are separate sites on the enzyme for the binding of NAD(H) and of NADP(H). There are some indications of the position of the binding sites in the primary sequence of the enzymes from mitochondria and Escherichia coli. Transfer of hydride ion equivalents only proceeds when a reduced and an oxidized nucleotide are simultaneously bound to the enzyme. When delta p = 0 the rate of interconversion of the ternary complexes of enzyme and nucleotide substrates is probably limiting. An increase in delta p accelerates the rate of interconversion in the direction of NADH----NADP+ until another kinetic component, possibly product release, becomes limiting. The available data are consistent with either direct or indirect mechanisms of energy coupling.
Collapse
Affiliation(s)
- J B Jackson
- School of Biochemistry, University of Birmingham, U.K
| |
Collapse
|
43
|
Lever TM, Palmer T, Cunningham IJ, Cotton NP, Jackson JB. Purification and properties of the H(+)-nicotinamide nucleotide transhydrogenase from Rhodobacter capsulatus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:247-55. [PMID: 1849819 DOI: 10.1111/j.1432-1033.1991.tb15905.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
1. H(+)-transhydrogenase from Rhodobacter capsulatus is an integral membrane protein which, unlike the enzyme from Rhodospirillum rubrum, does not require the presence of a water-soluble component for activity. 2. The enzyme from Rb. capsulatus was solubilised in Triton X-100 and subjected to ion-exchange, hydroxyapatite and then gel-exclusion column chromatography. SDS/PAGE of the purified enzyme revealed the presence of two polypeptides with apparent Mr 53,000 and 48,000. Other minor components which were stained on the electrophoresis gels or which were revealed on Western blots exposed to antibodies raised to total membrane proteins, were probably contaminants. 3. Antibodies raised to the 53-kDa and 48-kDa polypeptides cross-reacted with equivalent polypeptides in Western blots of solubilised membranes from Rb. capsulatus, Rhodobacter sphaeroides and Rhs. rubrum. The significance of this finding is discussed in the context of the hypothesis [Fisher, R.R. & Earle, S.R. (1982) The pyridine nucleotide coenzymes, pp. 279-324, Academic Press, New York] that the soluble component associated with H(+)-transhydrogenase from Rhs. rubrum is an integral part of the catalytic machinery. Antibodies against the 48-kDa and 53-kDa polypeptides of the Rb. capsulatus enzyme cross-reacted with equivalent polypeptides in solubilised membranes of Escherichia coli. 4. The dependence of the rate of H- transfer by purified H(+)-transhydrogenase on the nucleotide substrate concentrations under steady-state conditions, the effects of inhibition by nucleotide products and the inhibition by 2'-AMP and by 5'-AMP suggest that the reaction proceeds by the random addition of substrates to the enzyme with the formation of a ternary complex. 5. In conflict with this conclusion, the reduction of acetylpyridine adenine dinucleotide (AcPdAD+) by NADH in the absence of NADP+ by bacterial membranes was earlier taken as evidence for the existence of a reduced enzyme intermediate [Fisher, R.R. & Earle, S.R. (1982) The pyridine nucleotide coenzymes, pp. 279-324, Academic Press, New York]. However, it is shown here that although chromatophore membranes of Rb. capsulatus catalysed the reduction of AcPdAD+ by NADH, the reaction was not associated with the purified H(+)-transhydrogenase. Moreover, in contrast with the true transhydrogenase reaction, the reconstitution of AcPdAD+ reduction by NADH (in the absence of NADP+) in washed membranes of Rhs. rubrum with partially purified transhydrogenase factor, was only additive.
Collapse
Affiliation(s)
- T M Lever
- School of Biochemistry, University of Birmingham, England
| | | | | | | | | |
Collapse
|