1
|
Nesterov SV, Yaguzhinsky LS. Directed proton transfer from F o to F 1 extends the multifaceted proton functions in ATP synthase. Biophys Rev 2023; 15:859-873. [PMID: 37975013 PMCID: PMC10643803 DOI: 10.1007/s12551-023-01132-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/30/2023] [Indexed: 11/19/2023] Open
Abstract
The role of protons in ATP synthase is typically considered to be energy storage in the form of an electrochemical potential, as well as an operating element proving rotation. However, this review emphasizes that protons also act as activators of conformational changes in F1 and as direct participants in phosphorylation reaction. The protons transferred through Fo do not immediately leave to the bulk aqueous phase, but instead provide for the formation of a pH gradient between acidifying Fo and alkalizing F1. It facilitates a directed inter-subunit proton transfer to F1, where they are used in the ATP synthesis reaction. This ensures that the enzyme activity is not limited by a lack of protons in the alkaline mitochondrial matrix or chloroplast stroma. Up to one hundred protons bind to the carboxyl groups of the F1 subunit, altering the electrical interactions between the amino acids of the enzyme. This removes the inhibition of ATP synthase caused by the electrostatic attraction of charged amino acids of the stator and rotor and also makes the enzyme more prone to conformational changes. Protonation occurs during ATP synthesis initiation and during phosphorylation, while deprotonation blocks the rotation inhibiting both synthesis and hydrolysis. Thus, protons participate in the functioning of all main components of ATP synthase molecular machine making it effectively a proton-driven electric machine. The review highlights the key role of protons as a coupling factor in ATP synthase with multifaceted functions, including charge and energy transport, torque generation, facilitation of conformational changes, and participation in the ATP synthesis reaction.
Collapse
Affiliation(s)
- Semen V. Nesterov
- Kurchatov Complex of NBICS-Technologies, National Research Center Kurchatov Institute, 123182 Moscow, Russia
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Lev S. Yaguzhinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
- Belozersky Research Institute for Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
2
|
Foyer CH, Neukermans J, Queval G, Noctor G, Harbinson J. Photosynthetic control of electron transport and the regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1637-61. [PMID: 22371324 DOI: 10.1093/jxb/ers013] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The term 'photosynthetic control' describes the short- and long-term mechanisms that regulate reactions in the photosynthetic electron transport (PET) chain so that the rate of production of ATP and NADPH is coordinated with the rate of their utilization in metabolism. At low irradiances these mechanisms serve to optimize light use efficiency, while at high irradiances they operate to dissipate excess excitation energy as heat. Similarly, the production of ATP and NADPH in ratios tailored to meet demand is finely tuned by a sophisticated series of controls that prevents the accumulation of high NAD(P)H/NAD(P) ratios and ATP/ADP ratios that would lead to potentially harmful over-reduction and inactivation of PET chain components. In recent years, photosynthetic control has also been extrapolated to the regulation of gene expression because mechanisms that are identical or similar to those that serve to regulate electron flow through the PET chain also coordinate the regulated expression of genes encoding photosynthetic proteins. This requires coordinated gene expression in the chloroplasts, mitochondria, and nuclei, involving complex networks of forward and retrograde signalling pathways. Photosynthetic control operates to control photosynthetic gene expression in response to environmental and metabolic changes. Mining literature data on transcriptome profiles of C(3) and C(4) leaves from plants grown under high atmospheric carbon dioxide (CO(2)) levels compared with those grown with ambient CO(2) reveals that the transition to higher photorespiratory conditions in C(3) plants enhances the expression of genes associated with cyclic electron flow pathways in Arabidopsis thaliana, consistent with the higher ATP requirement (relative to NADPH) of photorespiration.
Collapse
Affiliation(s)
- Christine H Foyer
- Centre for Plant Sciences, Faculty of Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | |
Collapse
|
3
|
McCallum JR, McCarty RE. Proton flux through the chloroplast ATP synthase is altered by cleavage of its gamma subunit. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:974-9. [PMID: 17559799 DOI: 10.1016/j.bbabio.2007.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 04/02/2007] [Accepted: 04/23/2007] [Indexed: 11/21/2022]
Abstract
Electron transport, the proton gradient and ATP synthesis were determined in thylakoids that had been briefly exposed to a low concentration of trypsin during illumination. This treatment cleaves the gamma subunit of the ATP synthase into two large fragments that remain associated with the enzyme. Higher rates of electron transport are required to generate a given value of the proton gradient in the trypsin-treated membranes than in control membranes, indicating that the treated membranes are proton leaky. Since venturicidin restores electron transport and the proton gradient to control levels, the proton leak is through the ATP synthase. Remarkably, the synthesis of ATP by the trypsin-treated membranes at saturating light intensities is only slightly inhibited even though the proton gradient is significantly lower in the treated thylakoids. ATP synthesis and the proton gradient were determined as a function of light intensity in control and trypsin-treated thylakoids. The trypsin-treated membranes synthesized ATP at lower values of the proton gradient than the control membranes. Cleavage of the gamma subunit abrogates inhibition of the activity of the chloroplast ATP synthase by the epsilon subunit. Our results suggest that overcoming inhibition by the epsilon subunit costs energy.
Collapse
Affiliation(s)
- Jeremy R McCallum
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
4
|
Cipriano DJ, Dunn SD. The role of the epsilon subunit in the Escherichia coli ATP synthase. The C-terminal domain is required for efficient energy coupling. J Biol Chem 2005; 281:501-7. [PMID: 16267041 DOI: 10.1074/jbc.m509986200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of the C-domain of the epsilon subunit of ATP synthase was investigated by fusing either the 20-kDa flavodoxin (Fd) or the 5-kDa chitin binding domain (CBD) to the N termini of both full-length epsilon and a truncation mutant epsilon(88-stop). All mutant epsilon proteins were stable in cells and supported F1F0 assembly. Cells expressing the Fd-epsilon or Fd-epsilon(88-stop) mutants were unable to grow on acetate minimal medium, indicating their inability to carry out oxidative phosphorylation because of steric blockage of rotation. The other forms of epsilon supported growth on acetate. Membrane vesicles containing Fd-epsilon showed 23% of the wild type ATPase activity but no proton pumping, suggesting that the ATP synthase is intrinsically partially uncoupled. Vesicles containing CBD-epsilon were indistinguishable from the wild type in ATPase activity and proton pumping, indicating that the N-terminal fusions alone do not promote uncoupling. Fd-epsilon(88-stop) caused higher rates of uncoupled ATP hydrolysis than Fd-epsilon, and epsilon(88-stop) showed an increased rate of membrane-bound ATP hydrolysis but decreased proton pumping relative to the wild type. Both results demonstrate the role of the C-domain in coupling. Analysis of the wild type and epsilon(88-stop) mutant membrane ATPase activities at concentrations of ATP from 50 mum to 8 mm showed no significant dependence of the ratio of bound/released ATPase activity on ATP concentration. These results support the hypothesis that the main function of the C-domain in the Escherichia coli epsilon subunit is to reduce uncoupled ATPase activity, rather than to regulate coupled activity.
Collapse
Affiliation(s)
- Daniel J Cipriano
- Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
5
|
Feniouk BA, Mulkidjanian AY, Junge W. Proton slip in the ATP synthase of Rhodobacter capsulatus: induction, proton conduction, and nucleotide dependence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2005; 1706:184-94. [PMID: 15620379 DOI: 10.1016/j.bbabio.2004.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Revised: 10/26/2004] [Accepted: 10/27/2004] [Indexed: 11/25/2022]
Abstract
FOF1-ATP synthase converts two energetic "currencies" of the cell (ATP and protonmotive force, pmf) by coupling two rotary motors/generators. Their coupling efficiency is usually very high. Uncoupled proton leakage (slip) has only been observed in chloroplast enzyme at unphysiologically low nucleotide concentration. We investigated the properties of proton slip in chromatophores (sub-bacterial vesicles) from Rhodobacter capsulatus in the single-enzyme-per-vesicle mode. The membrane was energized by excitation with flashing light and the relaxation of the transmembrane voltage and pH difference was photometrically detected. We found that: (1) Proton slip occurred only at low nucleotide concentration (<1 microM) and after pre-illumination over several seconds. (2) Slip induction by pmf was accompanied by the release of approximately 0.25 mol ADP per mole of enzyme. There was no detectable detachment of F1 from FO. (3) The transmembrane voltage and the pH difference were both efficient in slip induction. Once induced, slip persisted for hours, and was only partially reverted by the addition of ADP or ATP (>1 microM). (4) There was no pmf threshold for the proton transfer through the slipping enzyme; slip could be driven both by voltage and pH difference. (5) The conduction was ohmic and weakly pH-dependent in the range from 5.5 to 9.5. The rate constant of proton transfer under slip conditions was 185 s(-1) at pH 8. Proton slip probably presents the free-wheeling of the central rotary shaft, subunit gamma, in an open structure of the (alphabeta)3 hexagon with no nucleotides in the catalytic sites.
Collapse
Affiliation(s)
- Boris A Feniouk
- Division of Biophysics, Faculty of Biology/Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany
| | | | | |
Collapse
|
6
|
Ort DR, Baker NR. A photoprotective role for O(2) as an alternative electron sink in photosynthesis? CURRENT OPINION IN PLANT BIOLOGY 2002; 5:193-8. [PMID: 11960735 DOI: 10.1016/s1369-5266(02)00259-5] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Photoprotection of the photosynthetic apparatus has two essential elements: first, the thermal dissipation of excess excitation energy in the photosystem II antennae (i.e. non-photochemical quenching), and second, the ability of photosystem II to transfer electrons to acceptors within the chloroplast (i.e. photochemical quenching). Recent studies indicate that the proportion of absorbed photons that are thermally dissipated through the non-photochemical pathway often reaches a maximum well before saturating irradiances are reached. Hence, photochemical quenching is crucial for photoprotection at saturating light intensities. When plants are exposed to environmental stresses and the availability of CO(2) within the leaf is restricted, the reduction of oxygen by both the photorespiratory and the Mehler ascorbate peroxidase pathways appears to play a critical photoprotective role, substituting for CO(2) in sustaining electron flow. Induction of high activity of the Mehler ascorbate peroxidase pathway may be associated with acclimation to environmental stress.
Collapse
Affiliation(s)
- Donald R Ort
- Photosynthesis Research Unit, USDA/ARS & Department of Plant Biology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
7
|
Evron Y, McCarty RE. Simultaneous measurement of deltapH and electron transport in chloroplast thylakoids by 9-aminoacridine fluorescence. PLANT PHYSIOLOGY 2000; 124:407-14. [PMID: 10982453 PMCID: PMC59153 DOI: 10.1104/pp.124.1.407] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2000] [Accepted: 05/29/2000] [Indexed: 05/22/2023]
Abstract
Electron transport and the electrochemical proton gradient across the thylakoid membrane are two fundamental parameters of photosynthesis. A combination of the electron acceptor, ferricyanide and the DeltapH indicator, 9-aminoacridine, was used to measure simultaneously electron transport rates and DeltapH solely by changes in the fluorescence of 9-aminoacridine. This method yields values for the rate of electron transport that are comparable with those obtained by established methods. Using this method a relationship between the rate of electron transport and DeltapH at various uncoupler concentrations or light intensities was obtained. In addition, the method was used to study the effect of reducing the disulfide bridge in the gamma-subunit of the chloroplast ATP synthase on the relation of electron transport to DeltapH. When the ATP synthase is reduced and alkylated, the threshold DeltapH at which the ATP synthase becomes leaky to protons is lower compared with the oxidized enzyme. Proton flow through the enzyme at a lower DeltapH may be a key step in initiation of ATP synthesis in the reduced enzyme and may be the way by which reduction of the disulfide bridge in the gamma-subunit enables high rates of ATP synthesis at low DeltapH values.
Collapse
Affiliation(s)
- Y Evron
- Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA
| | | |
Collapse
|
8
|
Noctor G, Foyer CH. Homeostasis of adenylate status during photosynthesis in a fluctuating environment. JOURNAL OF EXPERIMENTAL BOTANY 2000; 51 Spec No:347-56. [PMID: 10938842 DOI: 10.1093/jexbot/51.suppl_1.347] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This review describes and assesses pathways likely to influence and stabilize the ATP/reductant balance during whole cell photosynthesis. The sole reductive step of the Calvin cycle occurs during the conversion of 3-phosphoglycerate to triose phosphate. Photophosphorylation linked to this reaction can undoubtedly supply most of the ATP required by the Calvin cycle and other chloroplastic reactions. Small but crucial contributions must come from several other pathways, some of which involve co-operation between the chloroplast and the rest of the cell. Extrachloroplastic compartments can contribute to chloroplastic ATP requirements by supplying ATP directly or, probably more significantly, by accepting reducing equivalents and so supporting ATP synthesis within the chloroplast.
Collapse
Affiliation(s)
- G Noctor
- Department of Biochemistry and Physiology, IACR-Rothamsted, Harpenden, Hertfordshire, UK
| | | |
Collapse
|
9
|
Müller ML, Jensen M, Taiz L. The vacuolar H+-ATPase of lemon fruits is regulated by variable H+/ATP coupling and slip. J Biol Chem 1999; 274:10706-16. [PMID: 10196141 DOI: 10.1074/jbc.274.16.10706] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lemon fruit tonoplasts, unlike those of seedling epicotyls, contain nitrate-insensitive H+-ATPase activity (Müller, M. L., Irkens-Kiesecker, U., Rubinstein, B., and Taiz, L. (1996) J. Biol. Chem. 271, 1916-1924). However, the degree of nitrate-insensitivity fluctuates during the course of the year with a seasonal frequency. Nitrate uncouples H+ pumping from ATP hydrolysis both in epicotyls and in nitrate-sensitive fruit V-ATPases. Neither bafilomycin nor oxidation cause uncoupling. The initial rate H+/ATP coupling ratios of epicotyl and the nitrate-sensitive fruit proton pumping activities are the same. However, the H+/ATP coupling ratio of the nitrate-insensitive fruit H+ pumping activity is lower than that of nitrate-sensitive and epicotyl V-ATPases. Several properties of the nitrate-insensitive H+-ATPase of the fruit indicate that it is a modified V-ATPase rather than a P-ATPase: 1) insensitivity to low concentrations of vanadate; 2) it is initially strongly uncoupled by nitrate, but regains coupling as catalysis proceeds; 3) both the nitrate-sensitive and nitrate-insensitive fruit H+-pumps have identical Km values for MgATP, and show similar pH-dependent slip and proton leakage rates. We conclude that the ability of the juice sac V-ATPase to build up steep pH gradients involves three factors: variable coupling, i.e. the ability to regain coupling under conditions that initially induce uncoupling; a low pH-dependent slip rate; the low proton permeability of the membrane.
Collapse
Affiliation(s)
- M L Müller
- Biology Department, Sinsheimer Laboratories, University of California, Santa Cruz, California 95064, USA
| | | | | |
Collapse
|
10
|
Cappellini P, Turina P, Fregni V, Melandri BA. Sulfite stimulates the ATP hydrolysis activity of but not proton translocation by the ATP synthase of Rhodobacter capsulatus and interferes with its activation by delta muH+. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 248:496-506. [PMID: 9346308 DOI: 10.1111/j.1432-1033.1997.00496.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sulfite stimulates the rate of ATP hydrolysis by the ATP synthase in chromatophores of Rhodobacter capsulatus. The stimulated activity is inhibited by oligomycin. The activation takes place also in uncoupled chromatophores. The activation consists in an increase of about 12-15-fold of the Vmax for the ATP hydrolysis reaction, while the Km for MgATP is unaffected at 0.16+/-0.03 mM. The dependence of Vmax on the sulfite concentration follows a hyperbolic pattern with half maximum effect at 12 mM. Sulfite affects the ability of the enzyme in translocating protons. Concomitant measurements of the rate of ATP hydrolysis and of ATP-induced protonic flows demonstrate that at sulfite concentrations of greater than 10 mM the hydrolytic reaction becomes progressively uncoupled from the process of proton translocation. This is accompanied by an inhibition of ATP synthesis, either driven by light or by artificially induced ionic gradients. ATP synthesis is totally inhibited at concentrations of at least 80 mM. Sulfite interferes with the mechanism of activation by delta muH+. Low concentrations of this anion (< or = 2 mM) prevent the activation by delta muH+. At higher concentrations a marked stimulation of the activity prevails, regardless of the occurrence of a delta muH+ across the membrane. Phosphate at millimolar concentrations can reverse the inhibition by sulfite. These experimental results can be simulated by a model assuming multiple and competitive equilibria for phosphate or sulfite binding with two binding sites for the two ligands (for sulfite K1S = 0.26 and K2S = 37 mM, and for phosphate K1P = 0.06 and K2P = 4.22 mM), and in which the state bound only to one sulfite molecule is totally inactive in hydrolysis. The competition between phosphate and sulfite is consistent with the molecular structures of the two ligands and of the enzyme.
Collapse
Affiliation(s)
- P Cappellini
- Department of Biology, University of Bologna, Italy
| | | | | | | |
Collapse
|
11
|
Sigalat C, Pitard B, Haraux F. Proton coupling is preserved in membrane-bound chloroplast ATPase activated by high concentrations of tentoxin. FEBS Lett 1995; 368:253-6. [PMID: 7628616 DOI: 10.1016/0014-5793(95)00664-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of tentoxin at high concentrations was investigated in thylakoids and proteoliposomes containing bacteriorhodopsin and CF0CF1. Venturicidin-sensitive ATP hydrolysis, ATP-generated delta pH and ATP synthesis were practically 100% inhibited at 2 microM tentoxin, and restored to various extents beyond 50 microM. With respect to the native enzyme, tentoxin-reactivated ATPase had the following properties: (i) a higher delta pH requirement to synthetise ATP; (ii) a decreased futile proton flow through CF0CF1 (without ADP), which remains 100% blocked by ADP. It is concluded that despite its altered kinetic performances, tentoxin-modified CF0CF1 preserves its mechanism and remains a tightly coupled proton pump.
Collapse
Affiliation(s)
- C Sigalat
- Section de Bioénergétique, DBCM-CEA Saclay, Gif-sur-Yvette, France
| | | | | |
Collapse
|
12
|
Komatsu-Takaki M. Effects of Energization and Substrates on the Reactivities of Lysine Residues of the Chloroplast ATP Synthase beta Subunit. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20259.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
13
|
Abstract
ATP synthase is regulated so as to prevent futile hydrolysis of ATP when the transmembrane proton electrochemical gradient, delta mu H+, falls. Mitochondria and chloroplasts have different mechanisms for inhibition of ATP synthase: by binding an inhibitor protein, and by stabilization of the ADP-inhibited state by making an intramolecular disulphide bond, respectively. The recently determined structure of bovine F1-ATPase is locked in a conformation that probably represents the ADP-inhibited state of the enzyme.
Collapse
Affiliation(s)
- J E Walker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
14
|
Groth G, Junge W. Proton slip of the chloroplast ATPase: its nucleotide dependence, energetic threshold, and relation to an alternating site mechanism of catalysis. Biochemistry 1993; 32:8103-11. [PMID: 8394125 DOI: 10.1021/bi00083a008] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The F-ATPase of chloroplasts couples proton flow to ATP synthesis, but is leaky to protons in the absence of nucleotides. This "proton slip" can be blocked by small concentrations of ADP or by inhibitors of the channel portion, CF0. We studied charge flow through the ATPase by flash spectrophotometry and analyzed the inhibition of proton slip by nucleotides, phosphate/arsenate, and insufficient proton motive force. The following inhibition constants (at given background concentrations) were observed: ADP, 0.2 microM (0.5 mM P(i)); ADP, 13.4 microM (no P(i)); P(i), 43 microM (1 microM ADP); GDP, 2.5 microM (0.5 mM P(i)); ATP, 2 microM. ADP and P(i) mutually lowered their respective inhibition constants. Phosphate could be replaced by arsenate. Proton slip occurred only if the proton motive force exceeded a certain threshold, similar to that for ATP synthesis. The inhibition of proton slip by ADP and GDP qualified the respective nucleotide binding sites as belonging to the subset of two (or three) potentially catalytic sites out of the total of six. We interpreted the ADP-induced transition between different conduction states of the ATPase from "slipping" to "closed" to "coupled" as a consequence of the alternating site mechanism of catalysis. Whereas the proton translocator idles in the absence of nucleotides, the high-affinity binding of the first ADP/P(i) couple to one site clutches proton flow to some (conformational) change that can only be executed after the binding of another ADP/P(i) couple to a second site. From there on these sites alternate in the catalytic cycle. An entropic machine is presented which likewise models proton slip, unisite, and multisite ATP synthesis and hydrolysis.
Collapse
Affiliation(s)
- G Groth
- Universität Osnabrück, Germany
| | | |
Collapse
|