1
|
Vetoshkina DV, Kozuleva MA, Proskuryakov II, Terentyev VV, Berezhnov AV, Naydov IA, Ivanov BN, Klenina IB, Borisova-Mubarakshina MM. Dependence of state transitions on illumination time in arabidopsis and barley plants. PROTOPLASMA 2024; 261:65-75. [PMID: 37462717 DOI: 10.1007/s00709-023-01877-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/28/2023] [Indexed: 01/12/2024]
Abstract
Solar energy absorbed by plants can be redistributed between photosystems in the process termed "state transitions" (ST). ST represents a reversible transition of a part of the PSII light harvesting complex (L-LHCII) between photosystem II (PSII) and photosystem I (PSI) in response to the change in light spectral composition. The present work demonstrates a slower development of the state 1 to state 2 transition, i.e., L-LHCII transition from PSII to PSI, in the leaves of dicotyledonous arabidopsis (Arabidopsis thaliana) than in the leaves of monocotyledonous barley (Hordeum vulgare) plants that was assessed by the measurement of chlorophyll a fluorescence at 77 K and of chlorophyll a fluorescence at room temperature. It is known that the first step of the state 1 to state 2 transition is phosphorylation of Lhcb1 and Lhcb2 proteins; however, we detected no difference in the rate of accumulation of these phosphorylated proteins in the studied plants. Therefore, the parameters, which possibly affect the second step of this transition, i.e., the migration of L-LHCII complexes along the thylakoid membrane, were evaluated. Spin-probe EPR measurements demonstrated that the thylakoid membranes viscosity in arabidopsis was higher compared to that in barley. Moreover, confocal microscopy data evidenced the different size of chloroplasts in the leaves of the studied species being larger in arabidopsis. The obtained results suggest that the observed deference in the development of the state 1 to state 2 transition in arabidopsis and barley is caused by the slower L-LHCII migration rate in arabidopsis than in barley plants rather than by the difference in the Lhcb1 and Lhcb2 phosphorylation.
Collapse
Affiliation(s)
- Daria V Vetoshkina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia.
| | - Marina A Kozuleva
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Ivan I Proskuryakov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Vasily V Terentyev
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Alexey V Berezhnov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Ilya A Naydov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Boris N Ivanov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Irina B Klenina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| | - Maria M Borisova-Mubarakshina
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Russia
| |
Collapse
|
2
|
Dobrikova AG, Krasteva V, Apostolova EL. Damage and protection of the photosynthetic apparatus from UV-B radiation. I. Effect of ascorbate. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:251-7. [PMID: 23127363 DOI: 10.1016/j.jplph.2012.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 09/28/2012] [Accepted: 10/04/2012] [Indexed: 05/05/2023]
Abstract
In this work, the effect of the exogenously added ascorbate (Asc) against the UV-B inhibition of the photosystem II (PSII) functions in isolated pea thylakoid membranes was studied. The results reveal that Asc decreases the UV-B induced damage of the donor and the acceptor side of PSII during short treatment up to 60 min. The exogenous Asc exhibits a different UV-protective effect on PSII centers in grana and stroma lamellae, as the effect is more pronounced on the PSIIβ centers in comparison to PSIIα centers. Data also suggest that one of the possible protective roles of the Asc in photosynthetic membranes is the modification of the oxygen-evolving complex by influence on the initial S(0)-S(1) state distribution in the dark.
Collapse
Affiliation(s)
- Anelia G Dobrikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.21, Sofia 1113, Bulgaria
| | | | | |
Collapse
|
3
|
Nellaepalli S, Kodru S, Subramanyam R. Effect of cold temperature on regulation of state transitions in Arabidopsis thaliana. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2012; 112:23-30. [PMID: 22575347 DOI: 10.1016/j.jphotobiol.2012.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/30/2012] [Accepted: 04/04/2012] [Indexed: 11/29/2022]
Abstract
Low temperature is one of the most important abiotic factors limiting growth, development and distribution of plants. The effect of cold temperature on phosphorylation and migration of LHCII has been studied by 77K fluorescence emission spectroscopy and immuno-blotting in Arabidopsis thaliana. It has been reported that the mechanism of state transitions has been well operated at optimum growth temperatures. In this study, exposure of leaves to cold conditions (10 °C for 180 min) along with low light treatment (for 3h) did not show any increase in F726 which corresponds to fluorescence from PSI supercomplex, whereas low light at optimal temperature (26±2 °C) could enhanced F726. Therefore these results conclude that low light at cold condition did not enhance PSI absorption cross-section. We have also observed low levels of LHCII phosphorylation in cold exposed leaves in dark or low light. Though LHCII phosphorylation was detectable, the lateral movement of phosphorylated LHCII is reduced due to high granal stacking in cold treated leaves either in light or dark. Apart from these results, it is suggested that increased OJ phase and decreased JI and IP phases of Chl a fluorescence transients were due to reduced electron transport processes in cold treated samples.
Collapse
Affiliation(s)
- Sreedhar Nellaepalli
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad 500 046, India
| | | | | |
Collapse
|
4
|
Lindahl M, Yang DH, Andersson B. Regulatory Proteolysis of the Major Light-Harvesting Chlorophyll a/b Protein of Photosystem II by a Light-Induced Membrane-Associated Enzymic System. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0503e.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Hansson M, Dupuis T, Strömquist R, Andersson B, Vener AV, Carlberg I. The mobile thylakoid phosphoprotein TSP9 interacts with the light-harvesting complex II and the peripheries of both photosystems. J Biol Chem 2007; 282:16214-22. [PMID: 17400553 DOI: 10.1074/jbc.m605833200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The localization of the plant-specific thylakoid-soluble phosphoprotein of 9 kDa, TSP9, within the chloroplast thylakoid membrane of spinach has been established by the combined use of fractionation, immunoblotting, cross-linking, and mass spectrometry. TSP9 was found to be exclusively confined to the thylakoid membranes, where it is enriched in the stacked grana membrane domains. After mild solubilization of the membranes, TSP9 migrated together with the major light-harvesting antenna (LHCII) of photosystem II (PSII) and with PSII-LHCII supercomplexes upon separation of the protein complexes by either native gel electrophoresis or sucrose gradient centrifugation. Studies with a cleavable cross-linking agent revealed the interaction of TSP9 with both major and minor LHCII proteins as identified by mass spectrometric sequencing. Cross-linked complexes that in addition to TSP9 contain the peripheral PSII subunits CP29, CP26, and PsbS, which form the interface between LHCII and the PSII core, were found. Our observations also clearly suggest an interaction of TSP9 with photosystem I (PSI) as shown by both immunodetection and mass spectrometry. Sequencing identified the peripheral PSI subunits PsaL, PsaF, and PsaE, originating from cross-linked protein complexes of around 30 kDa that also contained TSP9. The distribution of TSP9 among the cross-linked forms was found to be sensitive to conditions such as light exposure. An association of TSP9 with LHCII as well as the peripheries of the photosystems suggests its involvement in regulation of photosynthetic light harvesting.
Collapse
Affiliation(s)
- Maria Hansson
- Division of Cell Biology, Linköping University, SE-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
6
|
Zer H, Vink M, Shochat S, Herrmann RG, Andersson B, Ohad I. Light affects the accessibility of the thylakoid light harvesting complex II (LHCII) phosphorylation site to the membrane protein kinase(s). Biochemistry 2003; 42:728-38. [PMID: 12534285 DOI: 10.1021/bi020451r] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Redox-controlled, reversible phosphorylation of the thylakoid light harvesting complex II (LHCII) regulates its association with photosystems (PS) I or II and thus, energy distribution between the two photosystems (state transition). Illumination of solubilized LHCII enhances exposure of the phosphorylation site at its N-terminal domain to protein kinase(s) and tryptic cleavage in vitro [Zer et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8277-8282]. Here we report that short illumination (5-10 min, 15-30 micromol m(-2) s(-1)) enhances the accessibility of LHCII phosphorylation site to kinase(s) activity also in isolated thylakoids. However, prolonged illumination or higher light intensities (30 min, 80-800 micromol m(-2) s(-1)) prevent phosphorylation of LHCII in the isolated membranes as well as in vivo, although redox-dependent protein kinase activity persists in the illuminated thylakoids toward exogenous solubilized LHCII. This phenomenon, ascribed to light-induced inaccessibility of the phosphorylation site to the protein kinase(s), affects in a similar way the accessibility of thylakoid LHCII N-terminal domain to tryptic cleavage. The illumination effect is not redox related, decreases linearly with temperature from 25 to 5 degrees C and may be ascribed to light-induced conformational changes in the complex causing lateral aggregation of dephosphorylated LHCII bound to and/or dissociated from PSII. The later state occurs under conditions allowing turnover of the phospho-LHCII phosphate. The light-induced inaccessibility of LHCII to the membrane-bound protein kinase reverses readily in darkness only if induced under LHCII-phosphate turnover conditions. Thus, phosphorylation prevents irreversible light-induced conformational changes in LHCII allowing lateral migration of the complex and the related state transition process.
Collapse
Affiliation(s)
- Hagit Zer
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | | | |
Collapse
|
7
|
Yang DH, Webster J, Adam Z, Lindahl M, Andersson B. Induction of acclimative proteolysis of the light-harvesting chlorophyll a/b protein of photosystem II in response to elevated light intensities. PLANT PHYSIOLOGY 1998; 118:827-34. [PMID: 9808726 PMCID: PMC34792 DOI: 10.1104/pp.118.3.827] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/1998] [Accepted: 08/03/1998] [Indexed: 05/20/2023]
Abstract
Most plants have the ability to respond to fluctuations in light to minimize damage to the photosynthetic apparatus. A proteolytic activity has been discovered that is involved in the degradation of the major light-harvesting chlorophyll a/b-binding protein of photosystem II (LHCII) when the antenna size of photosystem II is reduced upon acclimation of plants from low to high light intensities. This ATP-dependent proteolytic activity is of the serine or cysteine type and is associated with the outer membrane surface of the stroma-exposed thylakoid regions. The identity of the protease is not known, but it does not correspond to the recently identified chloroplast ATP-dependent proteases Clp and FtsH, which are homologs to bacterial enzymes. The acclimative response shows a delay of 2 d after transfer of the leaves to high light. This lag period was shown to be attributed to expression or activation of the responsible protease. Furthermore, the LHCII degradation was found to be regulated at the substrate level. The degradation process involves lateral migration of LHCII from the appressed to the nonappressed thylakoid regions, which is the location for the responsible protease. Phosphorylated LHCII was found to be a poor substrate for degradation in comparison with the unphosphorylated form of the protein. The relationship between LHCII degradation and other regulatory proteolytic processes in the thylakoid membrane, such as D1-protein degradation, is discussed.
Collapse
Affiliation(s)
- DH Yang
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden (D.-H.Y., J.W., M.L., B.A.)
| | | | | | | | | |
Collapse
|
8
|
Carlberg I, Andersson B. Phosphatase activities in spinach thylakoid membranes-effectors, regulation and location. PHOTOSYNTHESIS RESEARCH 1996; 47:145-156. [PMID: 24301822 DOI: 10.1007/bf00016177] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/1995] [Accepted: 12/04/1995] [Indexed: 06/02/2023]
Abstract
The dephosphorylation of seven phosphoproteins associated with Photosystem II or its chlorophyll a/b antenna in spinach thylakoids, was characterised. The rates were found to fall into two distinct groups. One, rapidly dephosphorylated, consisted of the two subunits (25 and 27 kD) of the major light harvesting complex of Photosystem II (LHC II) and a 12 kD polypeptide of unknown identity. A marked correlation between the dephosphorylation of these three phosphoproteins, strongly suggested that they were all dephosphorylated by the same enzyme. Within this group, the 25 kD subunit was consistently dephosphorylated most rapidly, probably reflecting its exclusive location in the peripheral pool of LHC II. The other group, only slowly dephosphorylated, included several PS II proteins such as the D1 and D2 reaction centre proteins, the chlorophyll-a binding protein CP43 and the 9 kD PS II-H phosphoprotein. No dephosphorylation was observed in either of the two groups in the absence of Mg(2+)-ions. Dephosphorylation of the two LHC II subunits took place in both grana and stroma-exposed regions of the thylakoid membrane. However, deposphorylation in the latter region was significantly more rapid, indicating a preferential dephosphorylation of the peripheral (or 'mobile') LHC II. Dephosphorylation of LHC II was found to be markedly affected by the redox state of thiol-groups, which may suggest a possible regulation of LHC II dephosphorylation involving the ferredoxin-thioredoxin system.
Collapse
Affiliation(s)
- I Carlberg
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, S-10691, Stockholm, Sweden
| | | |
Collapse
|
9
|
Lindahl M, Yang DH, Andersson B. Regulatory proteolysis of the major light-harvesting chlorophyll a/b protein of photosystem II by a light-induced membrane-associated enzymic system. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 231:503-9. [PMID: 7635162 DOI: 10.1111/j.1432-1033.1995.tb20725.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
An endogenous proteolytic activity associated with spinach chloroplast thylakoid membranes has been identified. This enzymic activity is involved in the degradation of the major light-harvesting chlorophyll a/b protein of photosystem II (LHCII) in response to exposure of leaves to increased irradiance. This proteolysis of LHCII requires an induction period and can only be detected 48-72 hours after transfer of the plants from low-intensity to high-intensity light. Once initiated by high-intensity light, the degradation of LHCII can readily occur in complete darkness. The proteolysis can, after induction in vivo, be experimentally followed in vitro, both in isolated intact chloroplasts and thylakoid membranes. The proteolytic process is strictly dependent on ATP and the protease involved is of the serine or cysteine type. The activity can be released from isolated thylakoid membranes by washing with high concentrations of NaCl and reconstituted by readdition of the desalted wash supernatant. It is concluded that the protease is extrinsically bound to the outer surface of the stroma-exposed regions of the stacked thylakoid membrane. The mechanism for the induction of the proteolytic process as well as its relation to previously described thylakoid proteases will be discussed.
Collapse
Affiliation(s)
- M Lindahl
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | | | |
Collapse
|
10
|
Bergantino E, Dainese P, Cerovic Z, Sechi S, Bassi R. A post-translational modification of the photosystem II subunit CP29 protects maize from cold stress. J Biol Chem 1995; 270:8474-81. [PMID: 7721743 DOI: 10.1074/jbc.270.15.8474] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The resistance of maize plants to cold stress has been associated with the appearance of a new chlorophyll a/b binding protein in the thylakoid membrane following chilling treatment in the light. The cold-induced protein has been isolated, characterized by amino acid sequencing, and pulse labeled with radioactive precursors, showing that it is the product of post-translational modification by phosphorylation of the minor chlorophyll a/b protein CP29 rather than the product of a cold-regulated gene or an unprocessed CP29 precursor. We show here that the CP29 kinase activity displays unique characteristics differing from previously described thylakoid kinases and is regulated by the redox state of a quinonic site. Finally, we show that maize plants unable to perform phosphorylation have enhanced sensitivity to cold-induced photoinhibition.
Collapse
Affiliation(s)
- E Bergantino
- Dipartimento di Biologia, Università di Padova, Italy
| | | | | | | | | |
Collapse
|
11
|
Adamska I, Kloppstech K. Low temperature increases the abundance of early light-inducible transcript under light stress conditions. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43800-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Georgakopoulos JH, Argyroudi-Akoyunoglou JH. Release of a “light” thylakoid membrane fragment with high F730/F685 fluorescence emission ratio (77 K) by digitonin disruption from “low-salt”-destacked or phosphorylated thylakoids of pea. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1994. [DOI: 10.1016/1011-1344(94)85036-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Andersson B, Barber J. Composition, Organization, and Dynamics of Thylakoid Membranes. MOLECULAR PROCESSES OF PHOTOSYNTHESIS 1994. [DOI: 10.1016/s1569-2558(08)60394-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Carlberg I, Andersson B. Changed lateral migration of phospho-LHCII in the thylakoid membrane upon acclimation of spinach to low temperatures. FEBS Lett 1993; 333:10-4. [PMID: 8224143 DOI: 10.1016/0014-5793(93)80365-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Movement of proteins along the plant thylakoid membrane is of importance for several physiological events, such as state transitions and turnover and repair of the photosystem II complex. Such lateral migrations are impaired at low temperatures, which could contribute to the increased sensitivity of plants to photoinhibitory damages at low temperatures. The migration behaviour of phospho-LHCII in thylakoid membranes isolated from cold-acclimated spinach was studied and compared to that in control membranes. The rate of migration of phospho-LHCII at low temperatures is increased 2- to 3-fold and the apparent activation energy of the migration is decreased after the cold acclimation.
Collapse
Affiliation(s)
- I Carlberg
- Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, Stockholm University, Sweden
| | | |
Collapse
|