1
|
Cherepanov DA, Kurashov V, Gostev FE, Shelaev IV, Zabelin AA, Shen G, Mamedov MD, Aybush A, Shkuropatov AY, Nadtochenko VA, Bryant DA, Golbeck JH, Semenov AY. Femtosecond optical studies of the primary charge separation reactions in far-red photosystem II from Synechococcus sp. PCC 7335. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149044. [PMID: 38588942 DOI: 10.1016/j.bbabio.2024.149044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/26/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Primary processes of light energy conversion by Photosystem II (PSII) were studied using femtosecond broadband pump-probe absorption difference spectroscopy. Transient absorption changes of core complexes isolated from the cyanobacterium Synechococcus sp. PCC 7335 grown under far-red light (FRL-PSII) were compared with the canonical Chl a containing spinach PSII core complexes upon excitation into the red edge of the Qy band. Absorption changes of FRL-PSII were monitored at 278 K in the 400-800 nm spectral range on a timescale of 0.1-500 ps upon selective excitation at 740 nm of four chlorophyll (Chl) f molecules in the light harvesting antenna, or of one Chl d molecule at the ChlD1 position in the reaction center (RC) upon pumping at 710 nm. Numerical analysis of absorption changes and assessment of the energy levels of the presumed ion-radical states made it possible to identify PD1+ChlD1- as the predominant primary charge-separated radical pair, the formation of which upon selective excitation of Chl d has an apparent time of ∼1.6 ps. Electron transfer to the secondary acceptor pheophytin PheoD1 has an apparent time of ∼7 ps with a variety of excitation wavelengths. The energy redistribution between Chl a and Chl f in the antenna occurs within 1 ps, whereas the energy migration from Chl f to the RC occurs mostly with lifetimes of 60 and 400 ps. Potentiometric analysis suggests that in canonical PSII, PD1+ChlD1- can be partially formed from the excited (PD1ChlD1)* state.
Collapse
Affiliation(s)
- Dmitry A Cherepanov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia.
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Fedor E Gostev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Ivan V Shelaev
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Alexey A Zabelin
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - Mahir D Mamedov
- A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia
| | - Arseny Aybush
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia
| | - Anatoly Ya Shkuropatov
- Institute of Basic Biological Problems of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", 142290 Pushchino, Moscow Region, Russia
| | - Victor A Nadtochenko
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory, 1, 119991 Moscow, Russia
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, 16802, USA
| | - Alexey Yu Semenov
- N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Kosygina st., 4, 119991 Moscow, Russia; A.N. Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, Leninskiye Gory, 1, building 40, 119992 Moscow, Russia.
| |
Collapse
|
2
|
Hu Y, Zhao L, Zhou J, Zhong X, Gu F, Liu Q, Li H, Guo R. iTRAQ protein profile analysis of young and old leaves of cotton (Gossypium hirsutum L.) differing in response to alkali stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 141:370-379. [PMID: 31212241 DOI: 10.1016/j.plaphy.2019.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/13/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Proteins will provide a new perspective and deeper understanding for the research of crop alkali tolerance. The aims of this study were to determine and identify the differentially abundant proteins and adaptive mechanisms to alkali tolerance between young and old leaves of cotton. The 4704 proteins were identified, in which 1490 were significantly changed in young leaves and 563 were changed in old leaves in response to alkali stress. The differentially abundant proteins were classified into 10 functional categories in the young leaves, and only 3 functional categories were involved in the old leaves. In the photoreaction system, the accumulations of differential proteins, especially Psb proteins, were higher in young leaves than in old leaves. Compared with old leaves, the carbon metabolism was enhanced significantly through an increased chlorophyll content and increased expression of key proteins for carbon metabolism in young leaves. Furthermore, alkali stress revealed more complex effects on the nitrogen metabolism in young leaves than that in old leaves. Our results demonstrated that during adaptation of cotton to alkali stress, young and old leaves have distinct mechanisms of molecular metabolism regulation. The metabolic flexibility was more remarkable in young leaves than in old leaves; therefore, the alkali tolerance of young leaves is more efficient. These data will increase our understanding of alkali-tolerant mechanisms in higher plants.
Collapse
Affiliation(s)
- Yongjun Hu
- School of Life Sciences, ChangChun Normal University, Changchun, 130024, China
| | - Long Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ji Zhou
- Land Consolidation and Rehabilitation Centre, Ministry of Natural Resources of the People's Republic of China, Beijing, 100000, PR China
| | - Xiuli Zhong
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fengxue Gu
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qi Liu
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haoru Li
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Orf GS, Gisriel C, Redding KE. Evolution of photosynthetic reaction centers: insights from the structure of the heliobacterial reaction center. PHOTOSYNTHESIS RESEARCH 2018; 138:11-37. [PMID: 29603081 DOI: 10.1007/s11120-018-0503-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 05/24/2023]
Abstract
The proliferation of phototrophy within early-branching prokaryotes represented a significant step forward in metabolic evolution. All available evidence supports the hypothesis that the photosynthetic reaction center (RC)-the pigment-protein complex in which electromagnetic energy (i.e., photons of visible or near-infrared light) is converted to chemical energy usable by an organism-arose once in Earth's history. This event took place over 3 billion years ago and the basic architecture of the RC has diversified into the distinct versions that now exist. Using our recent 2.2-Å X-ray crystal structure of the homodimeric photosynthetic RC from heliobacteria, we have performed a robust comparison of all known RC types with available structural data. These comparisons have allowed us to generate hypotheses about structural and functional aspects of the common ancestors of extant RCs and to expand upon existing evolutionary schemes. Since the heliobacterial RC is homodimeric and loosely binds (and reduces) quinones, we support the view that it retains more ancestral features than its homologs from other groups. In the evolutionary scenario we propose, the ancestral RC predating the division between Type I and Type II RCs was homodimeric, loosely bound two mobile quinones, and performed an inefficient disproportionation reaction to reduce quinone to quinol. The changes leading to the diversification into Type I and Type II RCs were separate responses to the need to optimize this reaction: the Type I lineage added a [4Fe-4S] cluster to facilitate double reduction of a quinone, while the Type II lineage heterodimerized and specialized the two cofactor branches, fixing the quinone in the QA site. After the Type I/II split, an ancestor to photosystem I fixed its quinone sites and then heterodimerized to bind PsaC as a new subunit, as responses to rising O2 after the appearance of the oxygen-evolving complex in an ancestor of photosystem II. These pivotal events thus gave rise to the diversity that we observe today.
Collapse
Affiliation(s)
- Gregory S Orf
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
| | - Christopher Gisriel
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA
- The Biodesign Center for Applied Structural Discovery, Arizona State University, Tempe, AZ, 85287, USA
| | - Kevin E Redding
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
4
|
Wang J, Wang XR, Zhou Q, Yang JM, Guo HX, Yang LJ, Liu WQ. iTRAQ protein profile analysis provides integrated insight into mechanisms of tolerance to TMV in tobacco (Nicotiana tabacum). J Proteomics 2016; 132:21-30. [PMID: 26608101 DOI: 10.1016/j.jprot.2015.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 11/24/2022]
Abstract
UNLABELLED To further investigate the mechanism of the plant tolerance to tobacco mosaic virus (TMV) infection, tobacco NC89 (N) hypersensitive to TMV and its natural mutant Yuyan8 (Y) with tolerance to TMV were employed for differential accumulation proteome analysis. There were 260 specifically accumulated proteins in Yuyan8 after 24 h inoculation (Yd), and the accumulations of 285 proteins inherent in Y have changed after TMV infection. Equally, there were 183 specifically accumulated proteins in NC89 after 24 h inoculation (Nd), and 132 proteins inherent in N have changed after TMV infection. These differential proteins were respectively enriched in two pathways, of which photosynthesis pathway was the common pathway in two varieties. In photoreaction system, the accumulations of differential proteins, especially D1 protein, were not decreased in Yd compared to Nd. The results indicated that maintaining the stability of D1 protein and reasonable utilization of the energy was the essential for tolerance to TMV infection. It was also revealed that 14-3-3 protein and PR4 was specific expressed, and the expression of LRR was enhanced in Yd, suggesting that regulation of defense protein mediated by 14-3-3 protein quickly activated resistance system and enhanced the plant tolerance to TMV infection. SIGNIFICANCE This is the first work that the molecular basis of tobacco tolerance was discussed basic on proteomic investigation performed on wild type and its natural mutant. Our results lay the foundation for development of molecular breeding and further proteome research in tobacco.
Collapse
Affiliation(s)
- Jing Wang
- The Key Lab of National Tobacco Cultivation, College of Tobacco Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xiao-ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qi Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Jin-miao Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Hong-xiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Li-jun Yang
- Zhumadian Branch of Henan Province Tobacco Company, Zhumadian 463000, PR China
| | - Wei-qun Liu
- The Key Lab of National Tobacco Cultivation, College of Tobacco Sciences, Henan Agricultural University, Zhengzhou 450002, PR China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
5
|
Shinopoulos KE, Brudvig GW. Cytochrome b₅₅₉ and cyclic electron transfer within photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:66-75. [PMID: 21864501 DOI: 10.1016/j.bbabio.2011.08.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/06/2011] [Accepted: 08/08/2011] [Indexed: 11/18/2022]
Abstract
Cytochrome b₅₅₉ (Cyt b₅₅₉), β-carotene (Car), and chlorophyll (Chl) cofactors participate in the secondary electron-transfer pathways in photosystem II (PSII), which are believed to protect PSII from photodamage under conditions in which the primary electron-donation pathway leading to water oxidation is inhibited. Among these cofactors, Cyt b₅₅₉ is preferentially photooxidized under conditions in which the primary electron-donation pathway is blocked. When Cyt b₅₅₉ is preoxidized, the photooxidation of several of the 11 Car and 35 Chl molecules present per PSII is observed. In this review, the discovery of the secondary electron donors, their structures and electron-transfer properties, and progress in the characterization of the secondary electron-transfer pathways are discussed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
6
|
Jankowiak R, Reppert M, Zazubovich V, Pieper J, Reinot T. Site Selective and Single Complex Laser-Based Spectroscopies: A Window on Excited State Electronic Structure, Excitation Energy Transfer, and Electron–Phonon Coupling of Selected Photosynthetic Complexes. Chem Rev 2011; 111:4546-98. [DOI: 10.1021/cr100234j] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Mike Reppert
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Valter Zazubovich
- Department of Physics, Concordia University, Montreal H4B1R6 Quebec, Canada
| | - Jörg Pieper
- Max-Volmer-Laboratories for Biophysical Chemistry, Technical University of Berlin, Germany
- Institute of Physics, University of Tartu, Riia 142, 51014 Tartu, Estonia
| | - Tonu Reinot
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
7
|
Romero E, van Stokkum IHM, Dekker JP, van Grondelle R. Ultrafast carotenoid band shifts correlated with Chlz excited states in the photosystem II reaction center: are the carotenoids involved in energy transfer? Phys Chem Chem Phys 2011; 13:5573-5. [DOI: 10.1039/c0cp02896g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Romero E, van Stokkum IHM, Novoderezhkin VI, Dekker JP, van Grondelle R. Two Different Charge Separation Pathways in Photosystem II. Biochemistry 2010; 49:4300-7. [DOI: 10.1021/bi1003926] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Elisabet Romero
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Ivo H. M. van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Vladimir I. Novoderezhkin
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninsky Gory, 119992 Moscow, Russia
| | - Jan P. Dekker
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
9
|
Seibert M. Picosecond spectroscopy of the isolated reaction centers from the photosystems of oxygenic photosynthesis--ten years (1987-1997) of fun : a tribute to Michael R. Wasielewski on his 60th birthday. PHOTOSYNTHESIS RESEARCH 2010; 103:1-6. [PMID: 19924560 DOI: 10.1007/s11120-009-9505-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/24/2009] [Indexed: 05/28/2023]
Abstract
Mike Wasielewski's pioneering work on Photosystem II photochemistry has an important place in the history of photosynthesis; we are proud to have been associated with him in making those first measurements. Here, we present our association and publications with him, and provide some of the history behind this research.
Collapse
|
10
|
Dang NC, Zazubovich V, Reppert M, Neupane B, Picorel R, Seibert M, Jankowiak R. The CP43 proximal antenna complex of higher plant photosystem II revisited: modeling and hole burning study. I. J Phys Chem B 2008; 112:9921-33. [PMID: 18642949 DOI: 10.1021/jp801373c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The CP43 core antenna complex of photosystem II is known to possess two quasi-degenerate "red"-trap states (Jankowiak, R. et al. J. Phys. Chem. B 2000, 104, 11805). It has been suggested recently (Zazubovich, V.; Jankowiak, R. J. Lumin. 2007, 127, 245) that the site distribution functions of the red states (A and B) are uncorrelated and that narrow holes are burned in the subpopulations of chlorophylls (Chls) from states A and B that are the lowest-energy Chl in their complex and previously thought not to transfer energy. This model of uncorrelated excitation energy transfer (EET) between the quasidegenerate bands is expanded by taking into account both electron-phonon and vibrational coupling. The model is applied to fit simultaneously absorption, emission, zero-phonon action, and transient hole burned (HB) spectra obtained for the CP43 complex with minimized contribution from aggregation. It is demonstrated that the above listed spectra can be well-fitted using the uncorrelated EET model, providing strong evidence for the existence of efficient energy transfer between the two lowest energy states, A and B (either from A to B or from B to A), in CP43. Possible candidate Chls for the low-energy A and B states are discussed, providing a link between CP43 structure and spectroscopy. Finally, we propose that persistent holes originate from regular NPHB accompanied by the redistribution of oscillator strength due to excitonic interactions, rather than photoconversion involving Chl-protein hydrogen bonding, as suggested before ( Hughes J. L. et al. Biochemistry 2006, 45, 12345 ). In the accompanying paper (Reppert, M.; Zazubovich, V.; Dang, N. C.; Seibert, M.; Jankowiak, R. J. Phys. Chem. B 2008, 9934), it is demonstrated that the model discussed in this manuscript is consistent with excitonic calculations, which also provide very good fits to both transient and persistent HB spectra obtained under non-line-narrowing conditions.
Collapse
Affiliation(s)
- Nhan C Dang
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Papageorgiou GC, Tsimilli-Michael M, Stamatakis K. The fast and slow kinetics of chlorophyll a fluorescence induction in plants, algae and cyanobacteria: a viewpoint. PHOTOSYNTHESIS RESEARCH 2007; 94:275-90. [PMID: 17665151 DOI: 10.1007/s11120-007-9193-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 05/03/2007] [Indexed: 05/16/2023]
Abstract
The light-induced/dark-reversible changes in the chlorophyll (Chl) a fluorescence of photosynthetic cells and membranes in the mus-to-several min time window (fluorescence induction, FI; or Kautsky transient) reflect quantum yield changes (quenching/de-quenching) as well as changes in the number of Chls a in photosystem II (PS II; state transitions). Both relate to excitation trapping in PS II and the ensuing photosynthetic electron transport (PSET), and to secondary PSET effects, such as ion translocation across thylakoid membranes and filling or depletion of post-PS II and post-PS I pools of metabolites. In addition, high actinic light doses may depress Chl a fluorescence irreversibly (photoinhibitory lowering; q(I)). FI has been studied quite extensively in plants an algae (less so in cyanobacteria) as it affords a low resolution panoramic view of the photosynthesis process. Total FI comprises two transients, a fast initial (OPS; for Origin, Peak, Steady state) and a second slower transient (SMT; for Steady state, Maximum, Terminal state), whose details are characteristically different in eukaryotic (plants and algae) and prokaryotic (cyanobacteria) oxygenic photosynthetic organisms. In the former, maximal fluorescence output occurs at peak P, with peak M lying much lower or being absent, in which case the PSMT phases are replaced by a monotonous PT fluorescence decay. In contrast, in phycobilisome (PBS)-containing cyanobacteria maximal fluorescence occurs at M which lies much higher than peak P. It will be argued that this difference is caused by a fluorescence lowering trend (state 1 --> 2 transition) that dominates the FI pattern of plants and algae, and correspondingly by a fluorescence increasing trend (state 2 --> 1 transition) that dominates the FI of PBS-containing cyanobacteria. Characteristically, however, the FI pattern of the PBS-minus cyanobacterium Acaryochloris marina resembles the FI patterns of algae and plants and not of the PBS-containing cyanobacteria.
Collapse
Affiliation(s)
- George C Papageorgiou
- National Center for Scientific Research Demokritos, Institute of Biology, Athens, 153 10, Greece.
| | | | | |
Collapse
|
12
|
Loll B, Kern J, Zouni A, Saenger W, Biesiadka J, Irrgang KD. The antenna system of photosystem II from Thermosynechococcus elongatus at 3.2 A resolution. PHOTOSYNTHESIS RESEARCH 2005; 86:175-84. [PMID: 16172937 DOI: 10.1007/s11120-005-4117-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 03/18/2005] [Indexed: 05/04/2023]
Abstract
The content and type of cofactors harboured in the Photosystem II core complex (PS IIcc) of the cyanobacterium Thermosynechococcus elongatus has been determined by biochemical and spectroscopic methods. 17 +/- 1 chlorophyll a per pheophytin a and 0.25 beta-carotene per chlorophyll a have been found in re-dissolved crystals of dimeric PS IIcc. The X-ray crystal structure of PS IIcc from Thermosynechococcus elongatus at 3.2 A resolution clearly shows chlorophyll a molecules arranged in two layers close to the cytoplasmic and lumenal sides of the thylakoid membrane. Each of the cytoplasmic layers contains 9 chlorophyll a, whose positions and orientations are related by a local twofold rotation pseudo-C2 axis passing through the non-haem Fe2+. These chlorophyll a are arranged comparably to those in the antenna domains of PsaA and PsaB of cyanobacterial Photosystem I affirming an evolutionary relation. The chlorophyll a in the lumenal layer are less well conserved between Photosystems I and II and even between CP43 and CP47 with 4 chlorophyll a in the former and 7 in the latter.
Collapse
Affiliation(s)
- Bernhard Loll
- Institute of Chemistry/Crystallography, Free University Berlin, Takustr. 6, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Germano M, Gradinaru CC, Shkuropatov AY, van Stokkum IHM, Shuvalov VA, Dekker JP, van Grondelle R, van Gorkom HJ. Energy and electron transfer in photosystem II reaction centers with modified pheophytin composition. Biophys J 2004; 86:1664-72. [PMID: 14990494 PMCID: PMC1304002 DOI: 10.1016/s0006-3495(04)74235-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Energy and electron transfer in Photosystem II reaction centers in which the photochemically inactive pheophytin had been replaced by 13(1)-deoxo-13(1)-hydroxy pheophytin were studied by femtosecond transient absorption-difference spectroscopy at 77 K and compared to the dynamics in untreated reaction center preparations. Spectral changes induced by 683-nm excitation were recorded both in the Q(Y) and in the Q(X) absorption regions. The data could be described by a biphasic charge separation. In untreated reaction centers the major component had a time constant of 3.1 ps and the minor component 33 ps. After exchange, time constants of 0.8 and 22 ps were observed. The acceleration of the fast phase is attributed in part to the redistribution of electronic transitions of the six central chlorin pigments induced by replacement of the inactive pheophytin. In the modified reaction centers, excitation of the lowest energy Q(Y) transition produces an excited state that appears to be localized mainly on the accessory chlorophyll in the active branch (B(A) in bacterial terms) and partially on the active pheophytin H(A). This state equilibrates in 0.8 ps with the radical pair. B(A) is proposed to act as the primary electron donor also in untreated reaction centers. The 22-ps (pheophytin-exchanged) or 33-ps (untreated) component may be due to equilibration with the secondary radical pair. Its acceleration by H(B) exchange is attributed to a faster reverse electron transfer from B(A) to. After exchange both and are nearly isoenergetic with the excited state.
Collapse
Affiliation(s)
- M Germano
- Biophysics Department, Huygens Laboratory, Leiden University, 2300 RA Leiden, Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Riley K, Jankowiak R, Rätsep M, Small GJ, Zazubovich V. Evidence for Highly Dispersive Primary Charge Separation Kinetics and Gross Heterogeneity in the Isolated PS II Reaction Center of Green Plants. J Phys Chem B 2004. [DOI: 10.1021/jp049562l] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K. Riley
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| | - R. Jankowiak
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| | - M. Rätsep
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| | - G. J. Small
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| | - V. Zazubovich
- Ames Laboratory, USDOE and Department of Chemistry, Iowa State University, Ames, Iowa 50011, and Institute of Physics, University of Tartu, 142 Riia Street, 51014 Tartu, Estonia
| |
Collapse
|
15
|
Andrizhiyevskaya EG, Frolov D, van Grondelle R, Dekker JP. On the role of the CP47 core antenna in the energy transfer and trapping dynamics of Photosystem II. Phys Chem Chem Phys 2004. [DOI: 10.1039/b411977k] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Zazubovich V, Jankowiak R, Riley K, Picorel R, Seibert M, Small GJ. How Fast Is Excitation Energy Transfer in the Photosystem II Reaction Center in the Low Temperature Limit? Hole Burning vs Photon Echo. J Phys Chem B 2003. [DOI: 10.1021/jp022231t] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V. Zazubovich
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, National Renewable Energy Laboratory, Golden, Colorado 80401, and E. E. Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain
| | - R. Jankowiak
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, National Renewable Energy Laboratory, Golden, Colorado 80401, and E. E. Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain
| | - K. Riley
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, National Renewable Energy Laboratory, Golden, Colorado 80401, and E. E. Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain
| | - R. Picorel
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, National Renewable Energy Laboratory, Golden, Colorado 80401, and E. E. Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain
| | - M. Seibert
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, National Renewable Energy Laboratory, Golden, Colorado 80401, and E. E. Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain
| | - G. J. Small
- Ames Laboratory, U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, National Renewable Energy Laboratory, Golden, Colorado 80401, and E. E. Aula Dei, CSIC, Apdo. 202, 50080 Zaragoza, Spain
| |
Collapse
|
17
|
Jankowiak R, Rätsep M, Hayes J, Zazubovich V, Picorel R, Seibert M, Small GJ. Primary Charge-Separation Rate at 5 K in Isolated Photosystem II Reaction Centers Containing Five and Six Chlorophyll a Molecules. J Phys Chem B 2003. [DOI: 10.1021/jp021787d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Jankowiak
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - M. Rätsep
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - J. Hayes
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - V. Zazubovich
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - R. Picorel
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - M. Seibert
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - G. J. Small
- Ames Laboratory, USDOE, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, Institute of Physics, University of Tartu, 51014 Tartu, Estonia, E. E. Aula Dei (CSIC), Apdo. 202, 50080 Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| |
Collapse
|
18
|
Kamiya N, Shen JR. Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-A resolution. Proc Natl Acad Sci U S A 2003; 100:98-103. [PMID: 12518057 PMCID: PMC140893 DOI: 10.1073/pnas.0135651100] [Citation(s) in RCA: 851] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2002] [Indexed: 11/18/2022] Open
Abstract
Photosystem II (PSII) is a multisubunit membrane protein complex performing light-induced electron transfer and water-splitting reactions, leading to the formation of molecular oxygen. The first crystal structure of PSII from a thermophilic cyanobacterium Thermosynechococcus elongatus was reported recently [Zouni, A., Witt, H. T., Kern, J., Fromme, P., Krauss, N., Saenger, W. & Orth, P. (2001) Nature 409, 739-743)] at 3.8-A resolution. To analyze the PSII structure in more detail, we have obtained the crystal structure of PSII from another thermophilic cyanobacterium, Thermosynechococcus vulcanus, at 3.7-A resolution. The present structure was built on the basis of the sequences of PSII large subunits D1, D2, CP47, and CP43; extrinsic 33- and 12-kDa proteins and cytochrome c550; and several low molecular mass subunits, among which the structure of the 12-kDa protein was not reported previously. This yielded much information concerning the molecular interactions within this large protein complex. We also show the arrangement of chlorophylls and cofactors, including two beta-carotenes recently identified in a region close to the reaction center, which provided important clues to the secondary electron transfer pathways around the reaction center. Furthermore, possible ligands for the Mn-cluster were determined. In particular, the C terminus of D1 polypeptide was shown to be connected to the Mn cluster directly. The structural information obtained here provides important insights into the mechanism of PSII reactions.
Collapse
Affiliation(s)
- Nobuo Kamiya
- RIKEN Harima InstituteSPring-8, Kouto 1-1-1, Mikazuki-cho, Sayou-gun, Hyogo 679-5148, Japan.
| | | |
Collapse
|
19
|
|
20
|
Zehetner A, Scheer H, Siffel P, Vacha F. Photosystem II reaction center with altered pigment-composition: reconstitution of a complex containing five chlorophyll a per two pheophytin a with modified chlorophylls. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:21-8. [PMID: 12351215 DOI: 10.1016/s0005-2728(02)00282-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pigment-depleted Photosystem II reaction centers (PS II-RCs) from a higher plant (pea) containing five chlorophyll a (Chl) per two pheophytin a (Phe), were treated with Chl and several derivatives under exchange conditions [FEBS Lett. 434 (1998) 88]. The resulting reconstituted complexes were compared to those obtained by pigment exchange of "conventional" PS II-RCs containing six Chl per two Phe. (1) The extraction of one Chl is fully reversible. (2) The site of extraction is the same as the one into which previously extraneous pigments have been exchanged, most likely the peripheral D1-H118. (3) Introducing an efficient quencher (Ni-Chl) into this site results in only 25% reduction of fluorescence, indicating incomplete energy equilibration among the "core" and peripheral chlorophylls.
Collapse
Affiliation(s)
- Andrea Zehetner
- Department Biologie I-Botanik, Universität München, Menzinger Str. 67, D-80638, Munich, Germany
| | | | | | | |
Collapse
|
21
|
Wang J, Gosztola D, Ruffle SV, Hemann C, Seibert M, Wasielewski MR, Hille R, Gustafson TL, Sayre RT. Functional asymmetry of photosystem II D1 and D2 peripheral chlorophyll mutants of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 2002; 99:4091-6. [PMID: 11904453 PMCID: PMC122653 DOI: 10.1073/pnas.062056899] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2001] [Accepted: 01/31/2002] [Indexed: 11/18/2022] Open
Abstract
The peripheral accessory chlorophylls (Chls) of the photosystem II (PSII) reaction center (RC) are coordinated by a pair of symmetry-related histidine residues (D1-H118 and D2-H117). These Chls participate in energy transfer from the proximal antennae complexes (CP43 and CP47) to the RC core chromophores. In addition, one or both of the peripheral Chls are redox-active and participate in a low-quantum-yield electron transfer cycle around PSII. We demonstrate that conservative mutations of the D2-H117 residue result in decreased Chl fluorescence quenching efficiency attributed to reduced accumulation of the peripheral accessory Chl cation, Chl(Z)(+). In contrast, identical symmetry-related mutations at residue D1-H118 had no effect on Chl fluorescence yield or quenching kinetics. Mutagenesis of the D2-H117 residue also altered the line width of the Chl(Z)(+) EPR signal, but the line shape of the D1-H118Q mutant remained unchanged. The D1-H118 and D2-H117 mutations also altered energy transfer properties in PSII RCs. Unlike wild type or the D1-H118Q mutant, D2-H117N RCs exhibited a reduced CD doublet in the red region of Chl absorbance band, indicative of reduced energetic coupling between P680 and the peripheral accessory Chl. In addition, transient absorption measurements of D2-H117N RCs, excited on the blue side of the Chl absorbance band, exhibited a ( approximately 400 fs) pheophytin Q(X) band bleach lifetime component not seen in wild-type or D1-H118Q RCs. The origin of this component may be related to delayed fast-energy equilibration of the excited state between the core pigments of this mutant.
Collapse
Affiliation(s)
- Jun Wang
- Department of Plant Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Renger T, Marcus RA. Photophysical Properties of PS-2 Reaction Centers and a Discrepancy in Exciton Relaxation Times. J Phys Chem B 2002. [DOI: 10.1021/jp013342f] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thomas Renger
- Noyes Laboratory of Chemical Physics, Mail Code 127-72, Pasadena, California 91125
| | - R. A. Marcus
- Noyes Laboratory of Chemical Physics, Mail Code 127-72, Pasadena, California 91125
| |
Collapse
|
23
|
Diner BA, Rappaport F. Structure, dynamics, and energetics of the primary photochemistry of photosystem II of oxygenic photosynthesis. ANNUAL REVIEW OF PLANT BIOLOGY 2002; 53:551-80. [PMID: 12221988 DOI: 10.1146/annurev.arplant.53.100301.135238] [Citation(s) in RCA: 256] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent progress in two-dimensional and three-dimensional electron and X-ray crystallography of Photosystem II (PSII) core complexes has led to major advances in the structural definition of this integral membrane protein complex. Despite the overall structural and kinetic similarity of the PSII reaction centers to their purple non-sulfur photosynthetic bacterial homologues, the different cofactors and subtle differences in their spatial arrangement result in significant differences in the energetics and mechanism of primary charge separation. In this review we discuss some of the recent spectroscopic, structural, and mutagenic work on the primary and secondary electron transfer reactions in PSII, stressing what is experimentally novel, what new insights have appeared, and where questions of interpretation remain.
Collapse
Affiliation(s)
- Bruce A Diner
- CR&D, Experimental Station, E. I. du Pont de Nemours & Co., Wilmington, Delaware 19880-0173, USA.
| | | |
Collapse
|
24
|
|
25
|
Rhee KH. Photosystem II: the solid structural era. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2001; 30:307-28. [PMID: 11340062 DOI: 10.1146/annurev.biophys.30.1.307] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Understanding the precise role of photosystem II as an element of oxygenic photosynthesis requires knowledge of the molecular structure of this membrane protein complex. The past few years have been particularly exciting because the structural era of the plant photosystem II has begun. Although the atomic structure has yet to be determined, the map obtained at 6 A resolution by electron crystallography allows assignment of the key reaction center subunits with their associated pigment molecules. In the following, we first review the structural details that have recently emerged and then discuss the primary and secondary photochemical reaction pathways. Finally, in an attempt to establish the evolutionary link between the oxygenic and the anoxygenic photosynthesis, a framework structure common to all photosynthetic reaction centers has been defined, and the implications have been described.
Collapse
Affiliation(s)
- K H Rhee
- Laboratory of Molecular Biology, Medical Research Council, Hills Road, Cambridge, CB2 2QH, United Kingdom.
| |
Collapse
|
26
|
Vasil'ev S, Orth P, Zouni A, Owens TG, Bruce D. Excited-state dynamics in photosystem II: insights from the x-ray crystal structure. Proc Natl Acad Sci U S A 2001; 98:8602-7. [PMID: 11459991 PMCID: PMC37482 DOI: 10.1073/pnas.141239598] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The heart of oxygenic photosynthesis is photosystem II (PSII), a multisubunit protein complex that uses solar energy to drive the splitting of water and production of molecular oxygen. The effectiveness of the photochemical reaction center of PSII depends on the efficient transfer of excitation energy from the surrounding antenna chlorophylls. A kinetic model for PSII, based on the x-ray crystal structure coordinates of 37 antenna and reaction center pigment molecules, allows us to map the major energy transfer routes from the antenna chlorophylls to the reaction center chromophores. The model shows that energy transfer to the reaction center is slow compared with the rate of primary electron transport and depends on a few bridging chlorophyll molecules. This unexpected energetic isolation of the reaction center in PSII is similar to that found in the bacterial photosystem, conflicts with the established view of the photophysics of PSII, and may be a functional requirement for primary photochemistry in photosynthesis. In addition, the model predicts a value for the intrinsic photochemical rate constant that is 4 times that found in bacterial reaction centers.
Collapse
Affiliation(s)
- S Vasil'ev
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1.
| | | | | | | | | |
Collapse
|
27
|
Gibasiewicz K, Dobek A, Breton J, Leibl W. Modulation of primary radical pair kinetics and energetics in photosystem II by the redox state of the quinone electron acceptor Q(A). Biophys J 2001; 80:1617-30. [PMID: 11259277 PMCID: PMC1301353 DOI: 10.1016/s0006-3495(01)76134-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Time-resolved photovoltage measurements on destacked photosystem II membranes from spinach with the primary quinone electron acceptor Q(A) either singly or doubly reduced have been performed to monitor the time evolution of the primary radical pair P680(+)Pheo(-). The maximum transient concentration of the primary radical pair is about five times larger and its decay is about seven times slower with doubly reduced compared with singly reduced Q(A). The possible biological significance of these differences is discussed. On the basis of a simple reversible reaction scheme, the measured apparent rate constants and relative amplitudes allow determination of sets of molecular rate constants and energetic parameters for primary reactions in the reaction centers with doubly reduced Q(A) as well as with oxidized or singly reduced Q(A). The standard free energy difference DeltaG degrees between the charge-separated state P680(+)Pheo(-) and the equilibrated excited state (Chl(N)P680)* was found to be similar when Q(A) was oxidized or doubly reduced before the flash (approximately -50 meV). In contrast, single reduction of Q(A) led to a large change in DeltaG degrees (approximately +40 meV), demonstrating the importance of electrostatic interaction between the charge on Q(A) and the primary radical pair, and providing direct evidence that the doubly reduced Q(A) is an electrically neutral species, i.e., is doubly protonated. A comparison of the molecular rate constants shows that the rate of charge recombination is much more sensitive to the change in DeltaG degrees than the rate of primary charge separation.
Collapse
Affiliation(s)
- K Gibasiewicz
- Section de Bioénergétique, DBCM, F-91191 Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
28
|
Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P. Crystal structure of photosystem II from Synechococcus elongatus at 3.8 A resolution. Nature 2001; 409:739-43. [PMID: 11217865 DOI: 10.1038/35055589] [Citation(s) in RCA: 1643] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Oxygenic photosynthesis is the principal energy converter on earth. It is driven by photosystems I and II, two large protein-cofactor complexes located in the thylakoid membrane and acting in series. In photosystem II, water is oxidized; this event provides the overall process with the necessary electrons and protons, and the atmosphere with oxygen. To date, structural information on the architecture of the complex has been provided by electron microscopy of intact, active photosystem II at 15-30 A resolution, and by electron crystallography on two-dimensional crystals of D1-D2-CP47 photosystem II fragments without water oxidizing activity at 8 A resolution. Here we describe the X-ray structure of photosystem II on the basis of crystals fully active in water oxidation. The structure shows how protein subunits and cofactors are spatially organized. The larger subunits are assigned and the locations and orientations of the cofactors are defined. We also provide new information on the position, size and shape of the manganese cluster, which catalyzes water oxidation.
Collapse
Affiliation(s)
- A Zouni
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Technische Universität Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Savikhin S, Xu W, Chitnis PR, Struve WS. Ultrafast primary processes in PS I from Synechocystis sp. PCC 6803: roles of P700 and A(0). Biophys J 2000; 79:1573-86. [PMID: 10969018 PMCID: PMC1301050 DOI: 10.1016/s0006-3495(00)76408-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The excitation transport and trapping kinetics of core antenna-reaction center complexes from photosystem I of wild-type Synechocystis sp. PCC 6803 were investigated under annihilation-free conditions in complexes with open and closed reaction centers. For closed reaction centers, the long-component decay-associated spectrum (DAS) from global analysis of absorption difference spectra excited at 660 nm is essentially flat (maximum amplitude <10(-5) absorbance units). For open reaction centers, the long-time spectrum (which exhibits photobleaching maxima at approximately 680 and 700 nm, and an absorbance feature near 690 nm) resembles one previously attributed to (P700(+) - P700). For photosystem I complexes excited at 660 nm with open reaction centers, the equilibration between the bulk antenna and far-red chlorophylls absorbing at wavelengths >700 nm is well described by a single DAS component with lifetime 2.3 ps. For closed reaction centers, two DAS components (2.0 and 6.5 ps) are required to fit the kinetics. The overall trapping time at P700 ( approximately 24 ps) is very nearly the same in either case. Our results support a scenario in which the time constant for the P700 --> A(0) electron transfer is 9-10 ps, whereas the kinetics of the subsequent A(0) --> A(1) electron transfer are still unknown.
Collapse
Affiliation(s)
- S Savikhin
- Ames Laboratory, U. S. Department of Energy, Ames, Iowa 50011, USA
| | | | | | | |
Collapse
|
30
|
Jankowiak R, Rätsep M, Picorel R, Seibert M, Small GJ. Excited States of the 5-Chlorophyll Photosystem II Reaction Center. J Phys Chem B 1999. [DOI: 10.1021/jp9906738] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- R. Jankowiak
- Ames Laboratory−U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, Apdo. 202, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - M. Rätsep
- Ames Laboratory−U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, Apdo. 202, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - R. Picorel
- Ames Laboratory−U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, Apdo. 202, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - M. Seibert
- Ames Laboratory−U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, Apdo. 202, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| | - G. J. Small
- Ames Laboratory−U.S. Department of Energy and Department of Chemistry, Iowa State University, Ames, Iowa 50011, E. E. Aula Dei, CSIC, Apdo. 202, 50080-Zaragoza, Spain, and National Renewable Energy Laboratory, Golden, Colorado 80401
| |
Collapse
|
31
|
Greenfield SR, Seibert M, Wasielewski MR. Time-Resolved Absorption Changes of the Pheophytin Qx Band in Isolated Photosystem II Reaction Centers at 7 K: Energy Transfer and Charge Separation. J Phys Chem B 1999. [DOI: 10.1021/jp990962w] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Scott R. Greenfield
- Chemical Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael Seibert
- Chemical Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael R. Wasielewski
- Chemical Sciences and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
32
|
|
33
|
Diner BA. [23]Application of spectroscopic techniques to the Study of Photosystem II Mutations Engineered in Synechocystis and Chlamydomonas. Methods Enzymol 1998. [DOI: 10.1016/s0076-6879(98)97025-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Groot ML, van Grondelle R, Leegwater JA, van Mourik F. Radical Pair Quantum Yield in Reaction Centers of Photosystem II of Green Plants and of the Bacterium Rhodobacter sphaeroides. Saturation Behavior with Sub-picosecond Pulses. J Phys Chem B 1997. [DOI: 10.1021/jp971113g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marie-Louise Groot
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Jan-Adriaan Leegwater
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Frank van Mourik
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
35
|
Donovan B, Walker LA, Kaplan D, Bouvier M, Yocum CF, Sension RJ. Structure and Function in the Isolated Reaction Center Complex of Photosystem II. 1. Ultrafast Fluorescence Measurements of PSII. J Phys Chem B 1997. [DOI: 10.1021/jp971112o] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brent Donovan
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Larry A. Walker
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Daniel Kaplan
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Marcel Bouvier
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Charles F. Yocum
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| | - Roseanne J. Sension
- Department of Chemistry, Department of Biology, and Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, MEDOX ELECTRO-OPTICS, 3940 Varsity Drive, Ann Arbor, Michigan 48108, and Alliage, 77 rue de Cardinal Lemoine, 75005 Paris, France
| |
Collapse
|
36
|
Groot ML, Eijckelhoff C, Dekker JP. Charge separation in the reaction center of photosystem II studied as a function of temperature. Proc Natl Acad Sci U S A 1997; 94:4389-94. [PMID: 9113999 PMCID: PMC20732 DOI: 10.1073/pnas.94.9.4389] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In photosystem II of green plants the key photosynthetic reaction consists of the transfer of an electron from the primary donor called P680 to a nearby pheophytin molecule. We analyzed the temperature dependence of this reaction by subpicosecond transient absorption spectroscopy over the temperature range 20-240 K using isolated photosystem II reaction centers from spinach. After excitation in the red edge of the Qy absorption band, the decay of the excited state can conveniently be described by two kinetic components that both accelerate with temperature. This temperature behavior differs remarkably from that observed in purple bacterial reaction centers. We attribute the first component, which accelerates from 2.6 ps at 20 K to 0.4 ps at 240 K, to charge separation after direct excitation of P680, and explain its temperature dependence by an intermediate that lies in energy above the singlet-excited P680 and that possibly has charge-transfer character. The second component accelerates from 120 ps at 20 K to 18 ps at 240 K and is attributed to charge separation after direct excitation of the "trap" state near-degenerate with P680 and subsequent slow energy transfer from this trap state to P680. We suggest that the slow energy transfer from the trap state to P680 plays an important role in the kinetics of radical pair formation at room temperature.
Collapse
Affiliation(s)
- M L Groot
- Department of Physics and Astronomy and Institute of Molecular Biological Sciences, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
37
|
Boussaad S, Tazi A, Leblanc RM. Chlorophyll a dimer: a possible primary electron donor for the photosystem II. Proc Natl Acad Sci U S A 1997; 94:3504-6. [PMID: 11038611 PMCID: PMC20468 DOI: 10.1073/pnas.94.8.3504] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the photosynthetic membrane, there is a particular aggregated state for the chlorophyll a (Chl a) molecules with a specific arrangement responsible for the high efficiency of energy conversion. Chl a monolayers, transferred onto solid substrates, are systems that potentially can mimic the packing of the in vivo system. The association of Chl a in the monolayer results in the formation of dimers with an average size of 3.00 +/- 0.15 nm. Considering the organization of the dimers, we assume that P680 is a dimer with the (anti) parallel transition moments of the constituent. The Chl a macrocycles most likely are tilted to each other by 30 degrees with respect to the membrane plane.
Collapse
Affiliation(s)
- S Boussaad
- P.O. Box 249118, Department of Chemistry, University of Miami, Coral Gables, FL 33124-0431, USA
| | | | | |
Collapse
|
38
|
Konermann L, Gatzen G, Holzwarth AR. Primary Processes and Structure of the Photosystem II Reaction Center. 5. Modeling of the Fluorescence Kinetics of the D1−D2−cyt-b559 Complex at 77 K. J Phys Chem B 1997. [DOI: 10.1021/jp9606671] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lars Konermann
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Guido Gatzen
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Alfred R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
39
|
Greenfield SR, Seibert M, Govindjee, Wasielewski MR. Direct Measurement of the Effective Rate Constant for Primary Charge Separation in Isolated Photosystem II Reaction Centers. J Phys Chem B 1997. [DOI: 10.1021/jp962982t] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Scott R. Greenfield
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3707, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael Seibert
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3707, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Govindjee
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3707, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| | - Michael R. Wasielewski
- Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439-4831, Basic Sciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401-3393, Department of Plant Biology, University of Illinois, Urbana, Illinois 61801-3707, and Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
40
|
Eijckelhoff C, Vacha F, van Grondelle R, Dekker JP, Barber J. Spectroscopic characterization of a 5 Chl a photosystem II reaction center complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1997. [DOI: 10.1016/s0005-2728(96)00144-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
41
|
Wavelength and intensity dependent primary photochemistry of isolated Photosystem II reaction centers at 5°C. Chem Phys 1996. [DOI: 10.1016/0301-0104(96)00185-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Xiong J, Subramaniam S. Modeling of the D1/D2 proteins and cofactors of the photosystem II reaction center: implications for herbicide and bicarbonate binding. Protein Sci 1996; 5:2054-73. [PMID: 8897606 PMCID: PMC2143261 DOI: 10.1002/pro.5560051012] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A three-dimensional model of the photosystem II (PSII) reaction center from the cyanobacterium Synechocystis sp. PCC 6803 was generated based on homology with the anoxygenic purple bacterial photosynthetic reaction centers of Rhodobacter sphaeroides and Rhodopseudomonas viridis, for which the X-ray crystallographic structures are available. The model was constructed with an alignment of D1 and D2 sequences with the L and M subunits of the bacterial reaction center, respectively, and by using as a scaffold the structurally conserved regions (SCRs) from bacterial templates. The structurally variant regions were built using a novel sequence-specific approach of searching for the best-matched protein segments in the Protein Data Bank with the "basic local alignment search tool" (Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, 1990, J Mol Biol 215:403-410), and imposing the matching conformational preference on the corresponding D1 and D2 regions. The structure thus obtained was refined by energy minimization. The modeled D1 and D2 proteins contain five transmembrane alpha-helices each, with cofactors (4 chlorophylls, 2 pheophytins, 2 plastoquinones, and a non-heme iron) essential for PSII primary photochemistry embedded in them. A beta-carotene, considered important for PSII photoprotection, was also included in the model. Four different possible conformations of the primary electron donor P680 chlorophylls were proposed, one based on the homology with the bacterial template and the other three on existing experimental suggestions in literature. The P680 conformation based on homology was preferred because it has the lowest energy. Redox active tyrosine residues important for P680+ reduction as well as residues important for PSII cofactor binding were analyzed. Residues involved in interprotein interactions in the model were also identified. Herbicide 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) was also modeled in the plastoquinone QB binding niche using the structural information available from a DCMU-binding bacterial reaction center. A bicarbonate anion, known to play a role in PSII, but not in anoxygenic photosynthetic bacteria, was modeled in the non-heme iron site, providing a bidentate ligand to the iron. By modifying the previous hypothesis of Blubaugh and Govindjee (1988, Photosyn Res 19:85-128), we modeled a second bicarbonate and a water molecule in the QB site and we proposed a hypothesis to explain the mechanism of QB protonation mediated by bicarbonate and water. The bicarbonate, stabilized by D1-R257, donates a proton to QB2- through the intermediate of D1-H252; and a water molecule donates another proton to QB2-. Based on the discovery of a "water transport channel" in the bacterial reaction center, an analogous channel for transporting water and bicarbonate is proposed in our PSII model. The putative channel appears to be primarily positively charged near QB and the non-heme iron, in contrast to the polarity distribution in the bacterial water transport channel. The constructed model has been found to be consistent with most existing data.
Collapse
Affiliation(s)
- J Xiong
- Department of Plant Biology, University of Illinois at Urbana-Champaign 61801, USA
| | | |
Collapse
|
43
|
Vasil'ev S, Bergmann A, Redlin H, Eichler HJ, Renger G. On the role of exchangeable hydrogen bonds for the kinetics of P680+. QA−. formation and P680+. Pheo−. recombination in photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1996. [DOI: 10.1016/0005-2728(96)00027-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Groot ML, Dekker JP, van Grondelle R, den Hartog FTH, Völker S. Energy Transfer and Trapping in Isolated Photosystem II Reaction Centers of Green Plants at Low Temperature. A Study by Spectral Hole Burning. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp960326n] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. L. Groot
- Department of Biophysics, Faculty of Physics and Astronomy, Free University, 1081 HV Amsterdam, The Netherlands, and Center for the Study of Excited States of Molecules, Huygens and Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - J. P. Dekker
- Department of Biophysics, Faculty of Physics and Astronomy, Free University, 1081 HV Amsterdam, The Netherlands, and Center for the Study of Excited States of Molecules, Huygens and Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - R. van Grondelle
- Department of Biophysics, Faculty of Physics and Astronomy, Free University, 1081 HV Amsterdam, The Netherlands, and Center for the Study of Excited States of Molecules, Huygens and Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - F. T. H. den Hartog
- Department of Biophysics, Faculty of Physics and Astronomy, Free University, 1081 HV Amsterdam, The Netherlands, and Center for the Study of Excited States of Molecules, Huygens and Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| | - S. Völker
- Department of Biophysics, Faculty of Physics and Astronomy, Free University, 1081 HV Amsterdam, The Netherlands, and Center for the Study of Excited States of Molecules, Huygens and Gorlaeus Laboratories, University of Leiden, 2300 RA Leiden, The Netherlands
| |
Collapse
|
45
|
Müller MG, Hucke M, Reus M, Holzwarth AR. Primary Processes and Structure of the Photosystem II Reaction Center. 4. Low-Intensity Femtosecond Transient Absorption Spectra of D1-D2-cyt-b559 Reaction Centers,. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp953714i] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marc G. Müller
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Mathias Hucke
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Michael Reus
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Alfred R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
46
|
Müller MG, Hucke M, Reus M, Holzwarth AR. Annihilation Processes in the Isolated D1-D2-cyt-b559 Reaction Center Complex of Photosystem II. An Intensity-Dependence Study of Femtosecond Transient Absorption,. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp953715a] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. G. Müller
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36; D-45470 Mülheim a.d. Ruhr, Germany
| | - M. Hucke
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36; D-45470 Mülheim a.d. Ruhr, Germany
| | - M. Reus
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36; D-45470 Mülheim a.d. Ruhr, Germany
| | - A. R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, Stiftstr. 34-36; D-45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
47
|
Nugent JH. Oxygenic photosynthesis. Electron transfer in photosystem I and photosystem II. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:519-31. [PMID: 8647094 DOI: 10.1111/j.1432-1033.1996.00519.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photosystems I and II drive oxygenic photosynthesis. This requires biochemical systems with remarkable properties, allowing these membrane-bound pigment-protein complexes to oxidise water and produce NAD(P)H. The protein environment provides a scaffold in the membrane on which cofactors are placed at optimum distance and orientation, ensuring a rapid, efficient trapping and conversion of light energy. The polypeptide core also tunes the redox potentials of cofactors and provides for unidirectional progress of various reaction steps. The electron transfer pathways use a variety of inorganic and organic cofactors, including amino acids. This review sets out some of the current ideas and data on the cofactors and polypeptides of photosystems I and II.
Collapse
Affiliation(s)
- J H Nugent
- Department of Biology, University College London, UK
| |
Collapse
|
48
|
Greenfield SR, Wasielewski MR. Excitation energy transfer and charge separation in the isolated Photosystem II reaction center. PHOTOSYNTHESIS RESEARCH 1996; 48:83-97. [PMID: 24271289 DOI: 10.1007/bf00040999] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/1996] [Accepted: 01/22/1996] [Indexed: 06/02/2023]
Abstract
The nature of excitation energy transfer and charge separation in isolated Photosystem II reaction centers is an area of considerable interest and controversy. Excitation energy transfer from accessory chlorophyll a to the primary electron donor P680 takes place in tens of picoseconds, although there is some evidence that thermal equilibration of the excitation between P680 and a subset of the accessory chlorophyll a occurs on a 100-fs timescale. The intrinsic rate for charge separation at low temperature is accepted to be ca. (2 ps)(-1), and is based on several measurements using different experimental techniques. This rate is in good agreement with estimates based on larger sized particles, and is similar to the rate observed with bacterial reaction centers. However, near room temperature there is considerable disagreement as to the observed rate for charge separation, with several experiments pointing to a ca. (3 ps)(-1) rate, and others to a ca. (20 ps)(-1) rate. These processes and the experiments used to measure them will be reviewed.
Collapse
Affiliation(s)
- S R Greenfield
- Argonne National Laboratory, Chemistry Division, 60439-4831, Argonne, IL, USA
| | | |
Collapse
|
49
|
Gatzen G, Müller MG, Griebenow K, Holzwarth AR. Primary Processes and Structure of the Photosystem II Reaction Center. 3. Kinetic Analysis of Picosecond Energy Transfer and Charge Separation Processes in the D1−D2−cyt-b559 Complex Measured by Time-Resolved Fluorescence. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp9530865] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guido Gatzen
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Marc G. Müller
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Kai Griebenow
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| | - Alfred R. Holzwarth
- Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34−36, D-45470 Mülheim a.d. Ruhr, Germany
| |
Collapse
|
50
|
Donovan B, Walker LA, Yocum CF, Sension RJ. Transient Absorption Studies of the Primary Charge Separation in Photosystem II. ACTA ACUST UNITED AC 1996. [DOI: 10.1021/jp951984v] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brent Donovan
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Larry A. Walker
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Charles F. Yocum
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | | |
Collapse
|