1
|
Gladyshev GV, Zharova TV, Kareyeva AV, Grivennikova VG. Proton-translocating NADH:ubiquinone oxidoreductase of Paracoccus denitrificans plasma membranes catalyzes FMN-independent reverse electron transfer to hexaammineruthenium (III). BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148963. [PMID: 36842539 DOI: 10.1016/j.bbabio.2023.148963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
NADH-OH, the specific inhibitor of NADH-binding site of the mammalian complex I, is shown to completely block FMN-dependent reactions of P. denitrificans enzyme in plasma membrane vesicles: NADH oxidation (in a competitive manner with Ki of 1 nM) as well as reduction of pyridine nucleotides, ferricyanide and oxygen in the reverse electron transfer. In contrast to these activities, the reverse electron transfer to hexaammineruthenium (III) catalyzed by plasma membrane vesicles is insensitive to NADH-OH. To explain these results, we hypothesize the existence of a non-FMN redox group of P. denitrificans complex I that is capable of reducing hexaammineruthenium (III), which is corroborated by the complex kinetics of NADH: hexaammineruthenium (III)-reductase activity, catalyzed by this enzyme. A new assay procedure for measuring succinate-driven reverse electron transfer catalyzed by P. denitrificans complex I to hexaammineruthenium (III) is proposed.
Collapse
Affiliation(s)
- Grigory V Gladyshev
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation.
| | - Tatyana V Zharova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| | - Alexandra V Kareyeva
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| | - Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Djurabekova A, Galemou Yoga E, Nyman A, Pirttikoski A, Zickermann V, Haapanen O, Sharma V. Docking and molecular simulations reveal a quinone binding site on the surface of respiratory complex I. FEBS Lett 2022; 596:1133-1146. [PMID: 35363885 DOI: 10.1002/1873-3468.14346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
The first component of the mitochondrial electron transport chain is respiratory complex I. Several high-resolution structures of complex I from different species have been resolved. However, despite these significant achievements, the mechanism of redox-coupled proton pumping remains elusive. Here, we combined atomistic docking, molecular dynamics simulations and site-directed mutagenesis on respiratory complex I from Yarrowia lipolytica to identify a quinone (Q) binding site on its surface near the horizontal amphipathic helices of ND1 and NDUFS7 subunits. The surface-bound Q makes stable interactions with conserved charged and polar residues, including the highly conserved Arg72 from the NDUFS7 subunit. The binding and dynamics of a Q molecule at the surface-binding site raises interesting possibilities about the mechanism of complex I, which are discussed.
Collapse
Affiliation(s)
| | - Etienne Galemou Yoga
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Aino Nyman
- Department of Physics, University of Helsinki, Finland
| | | | - Volker Zickermann
- Institute of Biochemistry II, University Hospital, Goethe University, Frankfurt am Main, Germany.,Centre for Biomolecular Magnetic Resonance, Institute for Biophysical Chemistry, Goethe University, Frankfurt am Main, Germany
| | - Outi Haapanen
- Department of Physics, University of Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, Finland.,HiLIFE Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
3
|
Ansari F, Yoval-Sánchez B, Niatsetskaya Z, Sosunov S, Stepanova A, Garcia C, Owusu-Ansah E, Ten V, Wittig I, Galkin A. Quantification of NADH:ubiquinone oxidoreductase (complex I) content in biological samples. J Biol Chem 2021; 297:101204. [PMID: 34543622 PMCID: PMC8503622 DOI: 10.1016/j.jbc.2021.101204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
Impairments in mitochondrial energy metabolism have been implicated in human genetic diseases associated with mitochondrial and nuclear DNA mutations, neurodegenerative and cardiovascular disorders, diabetes, and aging. Alteration in mitochondrial complex I structure and activity has been shown to play a key role in Parkinson's disease and ischemia/reperfusion tissue injury, but significant difficulty remains in assessing the content of this enzyme complex in a given sample. The present study introduces a new method utilizing native polyacrylamide gel electrophoresis in combination with flavin fluorescence scanning to measure the absolute content of complex I, as well as α-ketoglutarate dehydrogenase complex, in any preparation. We show that complex I content is 19 ± 1 pmol/mg of protein in the brain mitochondria, whereas varies up to 10-fold in different mouse tissues. Together with the measurements of NADH-dependent specific activity, our method also allows accurate determination of complex I catalytic turnover, which was calculated as 104 min-1 for NADH:ubiquinone reductase in mouse brain mitochondrial preparations. α-ketoglutarate dehydrogenase complex content was determined to be 65 ± 5 and 123 ± 9 pmol/mg protein for mouse brain and bovine heart mitochondria, respectively. Our approach can also be extended to cultured cells, and we demonstrated that about 90 × 103 complex I molecules are present in a single human embryonic kidney 293 cell. The ability to determine complex I content should provide a valuable tool to investigate the enzyme status in samples after in vivo treatment in mutant organisms, cells in culture, or human biopsies.
Collapse
Affiliation(s)
- Fariha Ansari
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Belem Yoval-Sánchez
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Zoya Niatsetskaya
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Sergey Sosunov
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Anna Stepanova
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Christian Garcia
- Department of Physiology & Cellular Biophysics, Columbia University, New York, New York, USA
| | - Edward Owusu-Ansah
- Department of Physiology & Cellular Biophysics, Columbia University, New York, New York, USA
| | - Vadim Ten
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany; German Center for Cardiovascular Research (DZHK), Partner site RheinMain, Frankfurt am Main, Germany
| | - Alexander Galkin
- Division of Neonatology, Department of Pediatrics, Columbia University Medical Center, New York, New York, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
4
|
Mutations in a conserved loop in the PSST subunit of respiratory complex I affect ubiquinone binding and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:573-581. [PMID: 31226318 DOI: 10.1016/j.bbabio.2019.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/10/2019] [Accepted: 06/15/2019] [Indexed: 12/13/2022]
Abstract
Respiratory complex I catalyses the reduction of ubiquinone (Q) from NADH coupled to proton pumping across the inner membrane of mitochondria. The electrical charging of the inner mitochondrial membrane drives the synthesis of ATP, which is used to power biochemical reactions of the cell. The recent surge in structural data on complex I from bacteria and mitochondria have contributed to significant understanding of its molecular architecture. However, despite these accomplishments, the role of various subdomains in redox-coupled proton pumping remains entirely unclear. In this work, we have mutated conserved residues in the loop of the PSST subunit that faces the ~30 Å long unique Q-binding tunnel of respiratory complex I. The data show a drastic decrease in Q reductase activity upon mutating several residues despite full assembly of the complex. In-silico modeling and multiple microsecond long molecular dynamics simulations of wild-type and enzyme variants with exchanges of conserved arginine residues revealed remarkable ejection of the bound Q from the site near terminal electron donor N2. Based on experiments and long-time scale molecular simulations, we identify microscopic elements that dynamically control the diffusion of Q and are central to redox-coupled proton pumping in respiratory complex I.
Collapse
|
5
|
Gladyshev GV, Grivennikova VG, Vinogradov AD. FMN site-independent energy-linked reverse electron transfer in mitochondrial respiratory complex I. FEBS Lett 2018; 592:2213-2219. [PMID: 29851085 DOI: 10.1002/1873-3468.13117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 11/06/2022]
Abstract
A simple assay procedure for measuring ATP-dependent reverse electron transfer from ubiquinol to hexaammineruthenium (III) (HAR) catalyzed by mitochondrial respiratory complex I is introduced. The specific activity of the enzyme in this reaction and its sensitivity to the standard inhibitors and uncoupling are the same as with other well-known electron acceptors, NAD+ and ferricyanide. In contrast to the reactions with these acceptors, the energy-dependent HAR reduction is not inhibited by NADH-OH, the specific inhibitor of NADH-binding site. These results suggest that a catalytically competent electron connection exists between HAR and a redox component of complex I that is different from flavin mononucleotide bound at the substrate-binding site.
Collapse
Affiliation(s)
- Grigory V Gladyshev
- Department of Biochemistry, School of Biology, Moscow State University, Russia
| | - Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Russia
| | - Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Russia
| |
Collapse
|
6
|
Vinogradov AD, Grivennikova VG. Oxidation of NADH and ROS production by respiratory complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:863-71. [PMID: 26571336 DOI: 10.1016/j.bbabio.2015.11.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/02/2015] [Accepted: 11/07/2015] [Indexed: 12/14/2022]
Abstract
Kinetic characteristics of the proton-pumping NADH:quinone reductases (respiratory complexes I) are reviewed. Unsolved problems of the redox-linked proton translocation activities are outlined. The parameters of complex I-mediated superoxide/hydrogen peroxide generation are summarized, and the physiological significance of mitochondrial ROS production is discussed. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.
Collapse
Affiliation(s)
- Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991.
| | - Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119991
| |
Collapse
|
7
|
Assembly defects induce oxidative stress in inherited mitochondrial complex I deficiency. Int J Biochem Cell Biol 2015; 65:91-103. [PMID: 26024641 DOI: 10.1016/j.biocel.2015.05.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/11/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022]
Abstract
Complex I (CI) deficiency is the most common respiratory chain defect representing more than 30% of mitochondrial diseases. CI is an L-shaped multi-subunit complex with a peripheral arm protruding into the mitochondrial matrix and a membrane arm. CI sequentially assembled into main assembly intermediates: the P (pumping), Q (Quinone) and N (NADH dehydrogenase) modules. In this study, we analyzed 11 fibroblast cell lines derived from patients with inherited CI deficiency resulting from mutations in the nuclear or mitochondrial DNA and impacting these different modules. In patient cells carrying a mutation located in the matrix arm of CI, blue native-polyacrylamide gel electrophoresis (BN-PAGE) revealed a significant reduction of fully assembled CI enzyme and an accumulation of intermediates of the N module. In these cell lines with an assembly defect, NADH dehydrogenase activity was partly functional, even though CI was not fully assembled. We further demonstrated that this functional N module was responsible for ROS production through the reduced flavin mononucleotide. Due to the assembly defect, the FMN site was not re-oxidized leading to a significant oxidative stress in cell lines with an assembly defect. These findings not only highlight the relationship between CI assembly and oxidative stress, but also show the suitability of BN-PAGE analysis in evaluating the consequences of CI dysfunction. Moreover, these data suggest that the use of antioxidants may be particularly relevant for patients displaying a CI assembly defect.
Collapse
|
8
|
Kalashnikov DS, Grivennikova VG, Vinogradov AD. Submitochondrial fragments of brain mitochondria: general characteristics and catalytic properties of NADH:ubiquinone oxidoreductase (complex I). BIOCHEMISTRY (MOSCOW) 2011; 76:209-16. [PMID: 21568854 DOI: 10.1134/s0006297911020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A number of genetic or drug-induced pathophysiological disorders, particularly neurodegenerative diseases, have been reported to correlate with catalytic impairments of NADH:ubiquinone oxidoreductase (mitochondrial complex I). The vast majority of the data on catalytic properties of this energy-transducing enzyme have been accumulated from studies on bovine heart complex I preparations of different degrees of resolution, whereas almost nothing is known about the functional activities of the enzyme in neuronal tissues. Here a procedure for preparation of coupled inside-out submitochondrial particles from brain is described and their NADH oxidase activity is characterized. The basic characteristics of brain complex I, particularly the parameters of A/D-transition are found to be essentially the same as those previously reported for heart enzyme. The results show that coupled submitochondrial particles prepared from either heart or brain can equally be used as a model system for in vitro studies aimed to delineate neurodegenerative-associated defects of complex I.
Collapse
Affiliation(s)
- D S Kalashnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | | | | |
Collapse
|
9
|
Lauterbach L, Idris Z, Vincent KA, Lenz O. Catalytic properties of the isolated diaphorase fragment of the NAD-reducing [NiFe]-hydrogenase from Ralstonia eutropha. PLoS One 2011; 6:e25939. [PMID: 22016788 PMCID: PMC3189943 DOI: 10.1371/journal.pone.0025939] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 09/14/2011] [Indexed: 11/19/2022] Open
Abstract
The NAD+-reducing soluble hydrogenase (SH) from Ralstonia eutropha H16 catalyzes the H2-driven reduction of NAD+, as well as reverse electron transfer from NADH to H+, in the presence of O2. It comprises six subunits, HoxHYFUI2, and incorporates a [NiFe] H+/H2 cycling catalytic centre, two non-covalently bound flavin mononucleotide (FMN) groups and an iron-sulfur cluster relay for electron transfer. This study provides the first characterization of the diaphorase sub-complex made up of HoxF and HoxU. Sequence comparisons with the closely related peripheral subunits of Complex I in combination with UV/Vis spectroscopy and the quantification of the metal and FMN content revealed that HoxFU accommodates a [2Fe2S] cluster, FMN and a series of [4Fe4S] clusters. Protein film electrochemistry (PFE) experiments show clear electrocatalytic activity for both NAD+ reduction and NADH oxidation with minimal overpotential relative to the potential of the NAD+/NADH couple. Michaelis-Menten constants of 56 µM and 197 µM were determined for NADH and NAD+, respectively. Catalysis in both directions is product inhibited with KI values of around 0.2 mM. In PFE experiments, the electrocatalytic current was unaffected by O2, however in aerobic solution assays, a moderate superoxide production rate of 54 nmol per mg of protein was observed, meaning that the formation of reactive oxygen species (ROS) observed for the native SH can be attributed mainly to HoxFU. The results are discussed in terms of their implications for aerobic functioning of the SH and possible control mechanism for the direction of catalysis.
Collapse
Affiliation(s)
- Lars Lauterbach
- Institute of Biology, Department of Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Zulkifli Idris
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Kylie A. Vincent
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
- * E-mail: (KAV); (OL)
| | - Oliver Lenz
- Institute of Biology, Department of Microbiology, Humboldt-Universität zu Berlin, Berlin, Germany
- * E-mail: (KAV); (OL)
| |
Collapse
|
10
|
A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem J 2011; 437:279-88. [PMID: 21545356 DOI: 10.1042/bj20110359] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a very large membrane protein complex with a central function in energy metabolism. Complex I from the aerobic yeast Yarrowia lipolytica comprises 14 central subunits that harbour the bioenergetic core functions and at least 28 accessory subunits. Despite progress in structure determination, the position of individual accessory subunits in the enzyme complex remains largely unknown. Proteomic analysis of subcomplex Iδ revealed that it lacked eleven subunits, including the central subunits ND1 and ND3 forming the interface between the peripheral and the membrane arm in bacterial complex I. This unexpected observation provided insight into the structural organization of the connection between the two major parts of mitochondrial complex I. Combining recent structural information, biochemical evidence on the assignment of individual subunits to the subdomains of complex I and sequence-based predictions for the targeting of subunits to different mitochondrial compartments, we derived a model for the arrangement of the subunits in the membrane arm of mitochondrial complex I.
Collapse
|
11
|
Kalashnikov DS, Grivennikova VG, Vinogradov AD. Synergetic inhibition of the brain mitochondrial NADH: Ubiquinone oxidoreductase (Complex I) by fatty acids and Ca2+. BIOCHEMISTRY (MOSCOW) 2011; 76:968-75. [DOI: 10.1134/s000629791108013x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
A ternary mechanism for NADH oxidation by positively charged electron acceptors, catalyzed at the flavin site in respiratory complex I. FEBS Lett 2011; 585:2318-22. [PMID: 21664911 DOI: 10.1016/j.febslet.2011.05.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 05/27/2011] [Accepted: 05/30/2011] [Indexed: 11/21/2022]
Abstract
The flavin mononucleotide in complex I (NADH:ubiquinone oxidoreductase) catalyzes NADH oxidation, O(2) reduction to superoxide, and the reduction of several 'artificial' electron acceptors. Here, we show that the positively-charged electron acceptors paraquat and hexaammineruthenium(III) react with the nucleotide-bound reduced flavin in complex I, by an unusual ternary mechanism. NADH, ATP, ADP and ADP-ribose stimulate the reactions, indicating that the positively-charged acceptors interact with their negatively-charged phosphates. Our mechanism for paraquat reduction defines a new mechanism for superoxide production by complex I (by redox cycling); in contrast to direct O(2) reduction the rate is stimulated, not inhibited, by high NADH concentrations.
Collapse
|
13
|
Birrell JA, Yakovlev G, Hirst J. Reactions of the flavin mononucleotide in complex I: a combined mechanism describes NADH oxidation coupled to the reduction of APAD+, ferricyanide, or molecular oxygen. Biochemistry 2010; 48:12005-13. [PMID: 19899808 DOI: 10.1021/bi901706w] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NADH:ubiquinone oxidoreductase (complex I) is a complicated respiratory chain enzyme that conserves the energy from NADH oxidation, coupled to ubiquinone reduction, as a proton motive force across the mitochondrial inner membrane. Alternatively, NADH oxidation, by the flavin mononucleotide in complex I, can be coupled to the reduction of hydrophilic electron acceptors, in non-energy-transducing reactions. The reduction of molecular oxygen and hydrophilic quinones leads to the production of reactive oxygen species, the reduction of nicotinamide nucleotides leads to transhydrogenation, and "artificial" electron acceptors are widely used to study the mechanism of NADH oxidation. Here, we use a combined modeling strategy to accurately describe data from three flavin-linked electron acceptors (molecular oxygen, APAD(+), and ferricyanide), in the presence and absence of a competitive inhibitor, ADP-ribose. Our combined ping-pong (or ping-pong-pong) mechanism comprises the Michaelis-Menten equation for the reactions of NADH and APAD(+), simple dissociation constants for nonproductive nucleotide-enzyme complexes (defined for specific flavin oxidation states), and second-order rate constants for the reactions of ferricyanide and oxygen. The NADH-dependent parameters are independent of the identity of the electron acceptor. In contrast, a further flavin-linked acceptor, hexaammineruthenium(III), does not obey ping-pong-pong kinetics, and alternative sites for its reaction are discussed. Our analysis provides kinetic and thermodynamic information about the reactions of the flavin active site in complex I that is relevant to understanding the physiologically relevant mechanisms of NADH oxidation and superoxide formation.
Collapse
Affiliation(s)
- James A Birrell
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | |
Collapse
|
14
|
Euro L, Belevich G, Wikström M, Verkhovskaya M. High affinity cation-binding sites in Complex I from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1024-8. [PMID: 19261245 DOI: 10.1016/j.bbabio.2009.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
Studies on the activity of Complex I from Escherichia coli in the presence of different metal cations revealed at least two high affinity metal-binding sites. Membrane-bound or isolated Complex I was activated by K(+) (apparent binding constant approximately 125 microM) and inhibited by La(3+) (IC(50)= 1 microM). K(+) and La(3+) do not occupy the same site. Possible localization of these metal-binding sites and their implication in catalysis are discussed.
Collapse
Affiliation(s)
- Liliya Euro
- Helsinki Bioenergetics Group, Institute of Biotechnology, PO Box 65 (Viikinkaari 1) 00014 University of Helsinki, Finland.
| | | | | | | |
Collapse
|
15
|
Euro L, Belevich G, Bloch DA, Verkhovsky MI, Wikström M, Verkhovskaya M. The role of the invariant glutamate 95 in the catalytic site of Complex I from Escherichia coli. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1787:68-73. [PMID: 19061856 DOI: 10.1016/j.bbabio.2008.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/01/2008] [Accepted: 11/05/2008] [Indexed: 12/01/2022]
Abstract
Replacement of glutamate 95 for glutamine in the NADH- and FMN-binding NuoF subunit of E. coli Complex I decreased NADH oxidation activity 2.5-4.8 times depending on the used electron acceptor. The apparent K(m) for NADH was 5.2 and 10.4 microM for the mutant and wild type, respectively. Analysis of the inhibitory effect of NAD(+) on activity showed that the E95Q mutation caused a 2.4-fold decrease of K(i)(NAD+) in comparison to the wild type enzyme. ADP-ribose, which differs from NAD(+) by the absence of the positively charged nicotinamide moiety, is also a competitive inhibitor of NADH binding. The mutation caused a 7.5-fold decrease of K(i)(ADP-ribose) relative to wild type enzyme. Based on these findings we propose that the negative charge of Glu95 accelerates turnover of Complex I by electrostatic interaction with the negatively charged phosphate groups of the substrate nucleotide during operation, which facilitates release of the product NAD(+). The E95Q mutation was also found to cause a positive shift of the midpoint redox potential of the FMN, from -350 mV to -310 mV, which suggests that the negative charge of Glu95 is also involved in decreasing the midpoint potential of the primary electron acceptor of Complex I.
Collapse
Affiliation(s)
- Liliya Euro
- Helsinki Bioenergetics Group, Institute of Biotechnology, University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
16
|
Vinogradov AD. NADH/NAD+ interaction with NADH: ubiquinone oxidoreductase (complex I). BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1777:729-34. [PMID: 18471432 PMCID: PMC2494570 DOI: 10.1016/j.bbabio.2008.04.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/20/2008] [Accepted: 04/13/2008] [Indexed: 10/22/2022]
Abstract
The quantitative data on the binding affinity of NADH, NAD(+), and their analogues for complex I as emerged from the steady-state kinetics data and from more direct studies under equilibrium conditions are summarized and discussed. The redox-dependency of the nucleotide binding and the reductant-induced change of FMN affinity to its tight non-covalent binding site indicate that binding (dissociation) of the substrate (product) may energetically contribute to the proton-translocating activity of complex I.
Collapse
Affiliation(s)
- Andrei D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation.
| |
Collapse
|
17
|
Gostimskaya IS, Grivennikova VG, Cecchini G, Vinogradov AD. Reversible dissociation of flavin mononucleotide from the mammalian membrane-bound NADH: ubiquinone oxidoreductase (complex I). FEBS Lett 2007; 581:5803-6. [PMID: 18037377 DOI: 10.1016/j.febslet.2007.11.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 11/14/2007] [Accepted: 11/15/2007] [Indexed: 11/29/2022]
Abstract
Conditions for the reversible dissociation of flavin mononucleotide (FMN) from the membrane-bound mitochondrial NADH:ubiquinone oxidoreductase (complex I) are described. The catalytic activities of the enzyme, i.e. rotenone-insensitive NADH:hexaammineruthenium III reductase and rotenone-sensitive NADH:quinone reductase decline when bovine heart submitochondrial particles are incubated with NADH in the presence of rotenone or cyanide at alkaline pH. FMN protects and fully restores the NADH-induced inactivation whereas riboflavin and flavin adenine dinucleotide do not. The data show that the reduction of complex I significantly weakens the binding of FMN to protein thus resulting in its dissociation when the concentration of holoenzyme is comparable with K(d ( approximately 10(-8)M at pH 10.0).
Collapse
Affiliation(s)
- Irina S Gostimskaya
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation
| | | | | | | |
Collapse
|
18
|
Grivennikova VG, Kotlyar AB, Karliner JS, Cecchini G, Vinogradov AD. Redox-dependent change of nucleotide affinity to the active site of the mammalian complex I. Biochemistry 2007; 46:10971-8. [PMID: 17760425 PMCID: PMC2258335 DOI: 10.1021/bi7009822] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A very potent and specific inhibitor of mitochondrial NADH:ubiquinone oxidoreductase (complex I), a derivative of NADH (NADH-OH) has recently been discovered (Kotlyar, A. B., Karliner, J. S., and Cecchini, G. (2005) FEBS Lett. 579, 4861-4866). Here we present a quantitative analysis of the interaction of NADH-OH and other nucleotides with oxidized and reduced complex I in tightly coupled submitochondrial particles. Both the rate of the NADH-OH binding and its affinity to complex I are strongly decreased in the presence of succinate. The effect of succinate is completely reversed by rotenone, antimycin A, and uncoupler. The relative affinity of ADP-ribose, a competitive inhibitor of NADH oxidation, is also shown to be significantly affected by enzyme reduction (KD of 30 and 500 microM for oxidized and the succinate-reduced enzyme, respectively). Binding of NADH-OH is shown to abolish the succinate-supported superoxide generation by complex I. Gradual inhibition of the rotenone-sensitive uncoupled NADH oxidase and the reverse electron transfer activities by NADH-OH yield the same final titration point (approximately 0.1 nmol/mg of protein). The titration of NADH oxidase appears as a straight line, whereas the titration of the reverse reaction appears as a convex curve. Possible models to explain the different titration patterns for the forward and reverse reactions are briefly discussed.
Collapse
Affiliation(s)
| | - Alexander B. Kotlyar
- * To whom correspondence should be addressed. (A.D.V.) Phone/fax: 7 495 939 1376. E-mail: . (A.B.K.) Phone: (415) 221-4810 ext. 3416. Fax: (415) 750-6959. E-mail:
| | | | | | - Andrei D. Vinogradov
- * To whom correspondence should be addressed. (A.D.V.) Phone/fax: 7 495 939 1376. E-mail: . (A.B.K.) Phone: (415) 221-4810 ext. 3416. Fax: (415) 750-6959. E-mail:
| |
Collapse
|
19
|
Zickermann V, Zwicker K, Tocilescu MA, Kerscher S, Brandt U. Characterization of a subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I) lacking the flavoprotein part of the N-module. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:393-400. [PMID: 17448440 DOI: 10.1016/j.bbabio.2007.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Revised: 03/02/2007] [Accepted: 03/05/2007] [Indexed: 11/19/2022]
Abstract
Mitochondrial NADH:ubiquinone oxidoreductase is the largest and most complicated proton pump of the respiratory chain. Here we report the preparation and characterization of a subcomplex of complex I selectively lacking the flavoprotein part of the N-module. Removing the 51-kDa and the 24-kDa subunit resulted in loss of catalytic activity. The redox centers of the subcomplex could be reduced neither by NADH nor NADPH demonstrating that physiological electron input into complex I occurred exclusively via the N-module and that the NADPH binding site in the 39-kDa subunit and further potential nucleotide binding sites are isolated from the electron transfer pathway within the enzyme. Taking advantage of the selective removal of two of the eight iron-sulfur clusters of complex I and providing additional evidence by redox titration and site-directed mutagenesis, we could for the first time unambiguously assign cluster N1 of fungal complex I to mammalian cluster N1b.
Collapse
Affiliation(s)
- Volker Zickermann
- Johann Wolfgang Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, Centre of Excellence Frankfurt Macromolecular Complexes, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
20
|
Grivennikova VG, Vinogradov AD. Generation of superoxide by the mitochondrial Complex I. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:553-61. [PMID: 16678117 DOI: 10.1016/j.bbabio.2006.03.013] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2005] [Revised: 03/13/2006] [Accepted: 03/17/2006] [Indexed: 10/24/2022]
Abstract
Superoxide production by inside-out coupled bovine heart submitochondrial particles, respiring with succinate or NADH, was measured. The succinate-supported production was inhibited by rotenone and uncouplers, showing that most part of superoxide produced during succinate oxidation is originated from univalent oxygen reduction by Complex I. The rate of the superoxide (O2*-)) production during respiration at a high concentration of NADH (1 mM) was significantly lower than that with succinate. Moreover, the succinate-supported O2*- production was significantly decreased in the presence of 1 mM NADH. The titration curves, i.e., initial rates of superoxide production versus NADH concentration, were bell-shaped with the maximal rate (at 50 microM NADH) approaching that seen with succinate. Both NAD+ and acetyl-NAD+ inhibited the succinate-supported reaction with apparent Ki's close to their Km's in the Complex I-catalyzed succinate-dependent energy-linked NAD+ reduction (reverse electron transfer) and NADH:acetyl-NAD+ transhydrogenase reaction, respectively. We conclude that: (i) under the artificial experimental conditions the major part of superoxide produced by the respiratory chain is formed by some redox component of Complex I (most likely FMN in its reduced or free radical form); (ii) two different binding sites for NADH (F-site) and NAD+ (R-site) in Complex I provide accessibility of the substrates-nucleotides to the enzyme red-ox component(s); F-site operates as an entry for NADH oxidation, whereas R-site operates in the reverse electron transfer and univalent oxygen reduction; (iii) it is unlikely that under the physiological conditions (high concentrations of NADH and NAD+) Complex I is responsible for the mitochondrial superoxide generation. We propose that the specific NAD(P)H:oxygen superoxide (hydrogen peroxide) producing oxidoreductase(s) poised in equilibrium with NAD(P)H/NAD(P)+ couple should exist in the mitochondrial matrix, if mitochondria are, indeed, participate in ROS-controlled processes under physiologically relevant conditions.
Collapse
Affiliation(s)
- Vera G Grivennikova
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119992, Russian Federation
| | | |
Collapse
|
21
|
Waletko A, Zwicker K, Abdrakhmanova A, Zickermann V, Brandt U, Kerscher S. Histidine 129 in the 75-kDa subunit of mitochondrial complex I from Yarrowia lipolytica is not a ligand for [Fe4S4] cluster N5 but is required for catalytic activity. J Biol Chem 2004; 280:5622-5. [PMID: 15572358 DOI: 10.1074/jbc.m411488200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Respiratory chain complex I contains 8-9 iron-sulfur clusters. In several cases, the assignment of these clusters to subunits and binding motifs is still ambiguous. To test the proposed ligation of the tetranuclear iron-sulfur cluster N5 of respiratory chain complex I, we replaced the conserved histidine 129 in the 75-kDa subunit from Yarrowia lipolytica with alanine. In the mutant strain, reduced amounts of fully assembled but destabilized complex I could be detected. Deamino-NADH: ubiquinone oxidoreductase activity was abolished completely by the mutation. However, EPR spectroscopic analysis of mutant complex I exhibited an unchanged cluster N5 signal, excluding histidine 129 as a cluster N5 ligand.
Collapse
Affiliation(s)
- Antje Waletko
- Universität Frankfurt, Fachbereich Medizin, Institut für Biochemie I, F-60590 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Brandt U, Kerscher S, Dröse S, Zwicker K, Zickermann V. Proton pumping by NADH:ubiquinone oxidoreductase. A redox driven conformational change mechanism? FEBS Lett 2003; 545:9-17. [PMID: 12788486 DOI: 10.1016/s0014-5793(03)00387-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The modular evolutionary origin of NADH:ubiquinone oxidoreductase (complex I) provides useful insights into its functional organization. Iron-sulfur cluster N2 and the PSST and 49 kDa subunits were identified as key players in ubiquinone reduction and proton pumping. Structural studies indicate that this 'catalytic core' region of complex I is clearly separated from the membrane. Complex I from Escherichia coli and Klebsiella pneumoniae was shown to pump sodium ions rather than protons. These new insights into structure and function of complex I strongly suggest that proton or sodium pumping in complex I is achieved by conformational energy transfer rather than by a directly linked redox pump.
Collapse
Affiliation(s)
- Ulrich Brandt
- Universität Frankfurt, Fachbereich Medizin, Institut für Biochemie I, Theodor-Stern-Kai 7, Haus 25B, D-60590 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
23
|
Dröse S, Zwicker K, Brandt U. Full recovery of the NADH:ubiquinone activity of complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica by the addition of phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1556:65-72. [PMID: 12351219 DOI: 10.1016/s0005-2728(02)00307-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
NADH:ubiquinone oxidoreductase (complex I) is the largest multiprotein complex of the mitochondrial respiratory chain. His-tagged complex I purified from the strictly aerobic yeast Yarrowia lipolytica exhibited electron transfer rates from NADH to n-decylubiquinone of less than 2% when compared to turnover numbers calculated for native mitochondrial membranes from this organism. Reactivation was observed upon addition of asolectin, purified phospholipids and different phospholipid mixtures. Maximal activities of 6-7 micromol NADH min(-1) mg(-1) were observed following incubation with a mixture of 76% phosphatidylcholine, 19% phosphatidylethanolamine and 5% cardiolipin. For full reactivation, 400-500 phospholipid molecules per complex I were needed. This demonstrated that the inactivation of complex I from Y. lipolytica by general delipidation could be fully reversed simply by returning the phospholipids that had been removed during the purification procedure. Thus, our homogeneous and highly pure complex I preparation had retained its full catalytic potential and no specific, functionally essential component had been lost. As the purified enzyme was also found to contain only substoichiometric amounts of ubiquinone-9 (0.2-0.4 mol/mol), a functional requirement of this endogeneous ubiquinone could also be excluded.
Collapse
Affiliation(s)
- Stefan Dröse
- Institut für Biochemie I - Molekulare Bioenergetik, Fachbereich Medizin, Johann Wolfgang Goethe-Universität, Theodor-Stern-Kai 7, Haus 25B, D-60590, Frankfurt am Main, Germany
| | | | | |
Collapse
|
24
|
Kerscher S, Dröse S, Zwicker K, Zickermann V, Brandt U. Yarrowia lipolytica, a yeast genetic system to study mitochondrial complex I. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1555:83-91. [PMID: 12206896 DOI: 10.1016/s0005-2728(02)00259-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The obligate aerobic yeast Yarrowia lipolytica is introduced as a powerful new model for the structural and functional analysis of mitochondrial complex I. A brief introduction into the biology and the genetics of this nonconventional yeast is given and the relevant genetic tools that have been developed in recent years are summarized. The respiratory chain of Y. lipolytica contains complexes I-IV, one "alternative" NADH-dehydrogenase (NDH2) and a non-heme alternative oxidase (AOX). Because the NADH binding site of NDH2 faces the mitochondrial intermembrane space rather than the matrix, complex I is an essential enzyme in Y. lipolytica. Nevertheless, complex I deletion strains could be generated by attaching the targeting sequence of a matrix protein, thereby redirecting NDH2 to the matrix side. Deletion strains for several complex I subunits have been constructed that can be complemented by shuttle plasmids carrying the deleted gene. Attachment of a hexa-histidine tag to the NUGM (30 kDa) subunit allows fast and efficient purification of complex I from Y. lipolytica by affinity-chromatography. The purified complex has lost most of its NADH:ubiquinone oxidoreductase activity, but is almost fully reactivated by adding 400-500 molecules of phosphatidylcholine per complex I. The established set of genetic tools has proven useful for the site-directed mutagenesis of individual subunits of Y. lipolytica complex I. Characterization of a number of mutations already allowed for the identification of several functionally important amino acids, demonstrating the usefulness of this approach.
Collapse
Affiliation(s)
- Stefan Kerscher
- Universitätsklinikum Frankfurt, Institut für Biochemie I, Zentrum der Biologischen Chemie, Theodor-Stern-Kai 7, Haus 25 B, D-60590 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
25
|
Ahlers PM, Zwicker K, Kerscher S, Brandt U. Function of conserved acidic residues in the PSST homologue of complex I (NADH:ubiquinone oxidoreductase) from Yarrowia lipolytica. J Biol Chem 2000; 275:23577-82. [PMID: 10811805 DOI: 10.1074/jbc.m002074200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proton-translocating NADH:ubiquinone oxidoreductase (complex I) is the largest and least understood enzyme of the respiratory chain. Complex I from bovine mitochondria consists of more than forty different polypeptides. Subunit PSST has been suggested to carry iron-sulfur center N-2 and has more recently been shown to be involved in inhibitor binding. Due to its pH-dependent midpoint potential, N-2 has been proposed to play a central role both in ubiquinone reduction and proton pumping. To obtain more insight into the functional role of PSST, we have analyzed site-directed mutants of conserved acidic residues in the PSST homologous subunit of the obligate aerobic yeast Yarrowia lipolytica. Mutations D136N and E140Q provided functional evidence that conserved acidic residues in PSST play a central role in the proton translocating mechanism of complex I and also in the interaction with the substrate ubiquinone. When Glu(89), the residue that has been suggested to be the fourth ligand of iron-sulfur center N-2 was changed to glutamine, alanine, or cysteine, the EPR spectrum revealed an unchanged amount of this redox center but was shifted and broadened in the g(z) region. This indicates that Glu(89) is not a ligand of N-2. The results are discussedin the light of structural similarities to the homologous [NiFe] hydrogenases.
Collapse
Affiliation(s)
- P M Ahlers
- Universitätsklinikum Frankfurt, Institut für Biochemie I, D-60590 Frankfurt am Main, Federal Republic of Germany
| | | | | | | |
Collapse
|
26
|
Zickermann V, Kurki S, Kervinen M, Hassinen I, Finel M. The NADH oxidation domain of complex I: do bacterial and mitochondrial enzymes catalyze ferricyanide reduction similarly? BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:61-8. [PMID: 10924899 DOI: 10.1016/s0005-2728(00)00113-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The hexammineruthenium (HAR) and ferricyanide reductase activities of Complex I (H+-translocating NADH:ubiquinone reductase) from Paracoccus denitrificans and bovine heart mitochondria were studied. The rates of HAR reduction are high, and its steady-state kinetics is similar in both P. denitrificans and bovine Complex I. The deamino-NADH:HAR reductase activity of Complex I from both sources is significantly higher than the respective activity in the presence of NADH. The HAR reductase activity of the bacterial and mitochondrial Complex I is similarly and strongly pH dependent. The pK(a) of this activity could not be determined, however, due to low stability of the enzymes at pH values above 8.0. In contrast to the high similarity between bovine and P. denitrificans Complex I as far as HAR reduction is concerned, the ferricyanide reductase activity of the bacterial enzyme is much lower than in mitochondria. Moreover, ferricyanide reduction in P. denitrificans, but not bovine mitochondria, is partially sensitive to dicyclohexylcarbodiimide (T. Yagi, Biochemistry 26 (1987) 2822-2828). On the other hand, the inhibition of ferricyanide reduction by high concentration of NADH, a typical phenomenon in bovine Complex I, is much weaker in the bacterial enzyme. The functional differences between the two enzymes might be linked to the properties of their binuclear Fe-S clusters.
Collapse
Affiliation(s)
- V Zickermann
- Department of Medical Chemistry, Institute of Biomedical Sciences and Biocentrun Helsinki, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
27
|
Zakharova NV, Zharova TV, Vinogradov AD. Kinetics of transhydrogenase reaction catalyzed by the mitochondrial NADH-ubiquinone oxidoreductase (Complex I) imply more than one catalytic nucleotide-binding sites. FEBS Lett 1999; 444:211-6. [PMID: 10050761 DOI: 10.1016/s0014-5793(99)00062-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The steady-state kinetics of the transhydrogenase reaction (the reduction of acetylpyridine adenine dinucleotide (APAD+) by NADH, DD transhydrogenase) catalyzed by bovine heart submitochondrial particles (SMP), purified Complex I, and by the soluble three-subunit NADH dehydrogenase (FP) were studied to assess a number of the Complex I-associated nucleotide-binding sites. Under the conditions where the proton-pumping transhydrogenase (EC 1.6.1.1) was not operating, the DD transhydrogenase activities of SMP and Complex I exhibited complex kinetic pattern: the double reciprocal plots of the velocities were not linear when the substrate concentrations were varied in a wide range. No binary complex (ping-pong) mechanism (as expected for a single substrate-binding site enzyme) was operating within any range of the variable substrates. ADP-ribose, a competitive inhibitor of NADH oxidase, was shown to compete more effectively with NADH (Ki = 40 microM) than with APAD+ (Ki = 150 microM) in the transhydrogenase reaction. FMN redox cycling-dependent, FP catalyzed DD transhydrogenase reaction was shown to proceed through a ternary complex mechanism. The results suggest that Complex I and the simplest catalytically competent fragment derived therefrom (FP) possess more than one nucleotide-binding sites operating in the transhydrogenase reaction.
Collapse
Affiliation(s)
- N V Zakharova
- Department of Biochemistry, School of Biology, Moscow State University, Russian Federation
| | | | | |
Collapse
|
28
|
Vinogradov AD. Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1364:169-85. [PMID: 9593879 DOI: 10.1016/s0005-2728(98)00026-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Moscow 119899, Russian Federation.
| |
Collapse
|
29
|
Zharova TV, Vinogradov AD. A competitive inhibition of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) by ADP-ribose. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:256-64. [PMID: 9230920 DOI: 10.1016/s0005-2728(97)00029-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Considerable quantitative variations in the competitive inhibition of NADH oxidase activity of bovine heart submitochondrial particles (SMP) by different samples of NAD- were observed. ADP-ribose (ADPR) was identified as the inhibitory contaminating substance responsible for variations in the inhibition observed. ADPR competitively inhibits NADH oxidation with Ki values (25 degrees C, pH 8.0) of 26 microM, 30 microM, and 180 microM for SMP, purified Complex I and three-subunit NADH dehydrogenase (FP), respectively. ADPR decreases NADH-induced flavin reduction and prolongs the cyclic bleaching of FP during aerobic oxidation of NADH. Ki for inhibition of the rotenone-sensitive NADH oxidase in SMP by ADPR does not depend on delta mu H+. The initial rate of the energy-dependent NAD+ reduction by succinate is insensitive to ADPR. The inhibitor increases the steady-state level of NAD+ reduction reached during aerobic succinate-supported reverse electron transfer catalyzed by tightly coupled SMP. The results obtained are consistent with the proposal on different nucleotide-binding sites operating in the direct and reverse reactions catalyzed by the mitochondrial NADH-ubiquinone reductase.
Collapse
Affiliation(s)
- T V Zharova
- Department of Biochemistry, School of Biology, Moscow State University, Russia
| | | |
Collapse
|