Pomroy NC, Deber CM. Solubilization of hydrophobic peptides by reversible cysteine PEGylation.
Biochem Biophys Res Commun 1998;
245:618-21. [PMID:
9571204 DOI:
10.1006/bbrc.1998.8493]
[Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
"PEG-a-Cys" reagent, synthesized by the esterification of monomethoxy-poly(ethylene glycol) (avg. MW = 5 kDa) to Ellman's reagent [5,5'-dithiobis(2-nitrobenzoic acid)], is shown to "PEGylate" reversibly the cysteine residue of a 25-residue synthetic hydrophobic peptide (H2N-REAAALAAAAALAAWAALCPARRRR-CO2H) designed to model a transmembrane segment of a membrane protein. A mixed disulfide bond was formed between the reagent and the peptide that was readily cleaved with the mild reducing agent tricarboxyethylphosphine hydrochloride (TCEP.HCl). Carboxypeptidase B digestion of the charged carboxyl terminus of the peptide through to the Ala residue--which mimics the enzymatic cleavage of a TM segment from a fusion protein--releases a highly hydrophobic peptide. A time-dependent decrease in the amplitude of the digested peptide circular dichroism (CD) spectra was attributed to the aggregation and/or precipitation of the peptide. While PEGylation of the peptide with PEG-a-Cys had a negligible effect on conformation, it inhibited the loss of CD amplitude in both intact and digested peptides, suggesting that it was effective in solubilization of hydrophobic peptides.
Collapse