1
|
Vedalankar P, Tripathy BC. Light dependent protochlorophyllide oxidoreductase: a succinct look. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:719-731. [PMID: 38846463 PMCID: PMC11150229 DOI: 10.1007/s12298-024-01454-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Reducing protochlorophyllide (Pchlide) to chlorophyllide (Chlide) is a major regulatory step in the chlorophyll biosynthesis pathway. This reaction is catalyzed by light-dependent protochlorophyllide oxidoreductase (LPOR) in oxygenic phototrophs, particularly angiosperms. LPOR-NADPH and Pchlide form a ternary complex to be efficiently photo-transformed to synthesize Chlide and, subsequently, chlorophyll during the transition from skotomorphogenesis to photomorphogenesis. Besides lipids, carotenoids and poly-cis xanthophylls influence the formation of the photoactive LPOR complexes and the PLBs. The crystal structure of LPOR reveals evolutionarily conserved cysteine residues implicated in the Pchlide binding and catalysis around the active site. Different isoforms of LPOR viz PORA, PORB, and PORC expressed at different stages of chloroplast development play a photoprotective role by quickly transforming the photosensitive Pchlide to Chlide. Non-photo-transformed Pchlide acts as a photosensitizer to generate singlet oxygen that causes oxidative stress and cell death. Therefore, different isoforms of LPOR have evolved and differentially expressed during plant development to protect plants from photodamage and thus play a pivotal role during photomorphogenesis. This review brings out the salient features of LPOR structure, structure-function relationships, and ultra-fast photo transformation of Pchlide to Chlide by oligomeric and polymeric forms of LPOR.
Collapse
Affiliation(s)
| | - Baishnab C. Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh 201310 India
| |
Collapse
|
2
|
Dlouhý O, Karlický V, Arshad R, Zsiros O, Domonkos I, Kurasová I, Wacha AF, Morosinotto T, Bóta A, Kouřil R, Špunda V, Garab G. Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. II. Structure and Functions. Cells 2021; 10:2363. [PMID: 34572012 PMCID: PMC8472583 DOI: 10.3390/cells10092363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 12/22/2022] Open
Abstract
In Part I, by using 31P-NMR spectroscopy, we have shown that isolated granum and stroma thylakoid membranes (TMs), in addition to the bilayer, display two isotropic phases and an inverted hexagonal (HII) phase; saturation transfer experiments and selective effects of lipase and thermal treatments have shown that these phases arise from distinct, yet interconnectable structural entities. To obtain information on the functional roles and origin of the different lipid phases, here we performed spectroscopic measurements and inspected the ultrastructure of these TM fragments. Circular dichroism, 77 K fluorescence emission spectroscopy, and variable chlorophyll-a fluorescence measurements revealed only minor lipase- or thermally induced changes in the photosynthetic machinery. Electrochromic absorbance transients showed that the TM fragments were re-sealed, and the vesicles largely retained their impermeabilities after lipase treatments-in line with the low susceptibility of the bilayer against the same treatment, as reflected by our 31P-NMR spectroscopy. Signatures of HII-phase could not be discerned with small-angle X-ray scattering-but traces of HII structures, without long-range order, were found by freeze-fracture electron microscopy (FF-EM) and cryo-electron tomography (CET). EM and CET images also revealed the presence of small vesicles and fusion of membrane particles, which might account for one of the isotropic phases. Interaction of VDE (violaxanthin de-epoxidase, detected by Western blot technique in both membrane fragments) with TM lipids might account for the other isotropic phase. In general, non-bilayer lipids are proposed to play role in the self-assembly of the highly organized yet dynamic TM network in chloroplasts.
Collapse
Affiliation(s)
- Ondřej Dlouhý
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
| | - Václav Karlický
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Rameez Arshad
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic; (R.A.); (R.K.)
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Ottó Zsiros
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| | - Ildikó Domonkos
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| | - Irena Kurasová
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - András F. Wacha
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary; (A.F.W.); (A.B.)
| | | | - Attila Bóta
- Institute of Materials and Environmental Chemistry, Eötvös Loránd Research Network, 1117 Budapest, Hungary; (A.F.W.); (A.B.)
| | - Roman Kouřil
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, 783 71 Olomouc, Czech Republic; (R.A.); (R.K.)
| | - Vladimír Špunda
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Laboratory of Ecological Plant Physiology, Domain of Environmental Effects on Terrestrial Ecosystems, Global Change Research Institute of the Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Győző Garab
- Group of Biophysics, Department of Physics, Faculty of Science, University of Ostrava, 710 00 Ostrava, Czech Republic; (O.D.); (V.K.); (I.K.); (V.Š.)
- Photosynthetic Membranes Group, Institute of Plant Biology, Biological Research Centre, Eötvös Loránd Research Network, 6726 Szeged, Hungary; (O.Z.); (I.D.)
| |
Collapse
|
3
|
Mohamad NJ, Gray D, Wolf B. Spinach leaf and chloroplast lipid: A natural rheology modifier for chocolate? Food Res Int 2020; 133:109193. [PMID: 32466904 DOI: 10.1016/j.foodres.2020.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 11/26/2022]
Abstract
In this study the possibility of replacing current surfactants in chocolate formulations with natural lipids extracted from spinach leaf (SPLIP) or spinach chloroplast (CH.SPLIP) was evaluated. SPLIP and CH.SPLIP were extracted with chloroform/methanol following enzyme deactivation with hot isopropanol. Results showed a higher extraction yield for SPLIP while glycolipids were more concentrated in CH.SPLIP. Sugar/oil suspensions with dispersed volume fractions of 0.28, 0.33 and 0.37 containing 0.1% to 0.7% (w/w) surfactant (SPLIP, CH.SPLIP, lecithin and PGPR as commercial references) based on oil phase were prepared and analyzed in shear rheology. Apparent viscosity at 40 s-1 was significantly lower for the natural surfactants compared to lecithin at 0.5-0.7% (w/w) addition. With regard to yield stress, taken as the shear stress at 5 s-1, both natural surfactants showed comparable performance to PGPR at 0.3% to 0.7% addition. As SPLIP and CH.SPLIP behaved similar (p > 0.05), SPLIP, due to higher extraction yield, would be the preferred choice for application in chocolate matrices.
Collapse
Affiliation(s)
- Nizaha Juhaida Mohamad
- Universiti Malaysia Terengganu, Faculty of Fisheries and Food Science, 21030 Kuala Nerus, Terengganu, Malaysia; Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom.
| | - David Gray
- Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Bettina Wolf
- Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| |
Collapse
|
4
|
Hoyo J, Guaus E, Torrent-Burgués J. Monogalactosyldiacylglycerol and digalactosyldiacylglycerol role, physical states, applications and biomimetic monolayer films. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2016; 39:39. [PMID: 27021656 DOI: 10.1140/epje/i2016-16039-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/16/2016] [Indexed: 06/05/2023]
Abstract
The relevance of biomimetic membranes using galactolipids has not been expressed in any extensive experimental study of these lipids. Thus, on the one hand, we present an in-depth article about the presence and role of monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) in thylakoid membranes, their physical states and their applications. On the other hand, we use the Langmuir and Langmuir-Blodgett (LB) techniques to prepare biomimetic monolayers of saturated galactolipids MGDG, DGDG and MGDG:DGDG 2:1 mixture (MD)--biological ratio--. These monolayers are studied using surface pressure-area isotherms and their data are processed to enlighten their physical states and mixing behaviour. These monolayers, once transferred to a solid substrate at several surface pressures are topographically studied on mica using atomic force microscopy (AFM) and using cyclic voltammetry for studying the electrochemical behaviour of the monolayers once transferred to indium-tin oxide (ITO), which has good optical and electrical properties. Moreover, MD presents other differences in comparison with its pure components that are explained by the presence of different kinds of galactosyl headgroups that restrict the optimal orientation of the MGDG headgroups.
Collapse
Affiliation(s)
- Javier Hoyo
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain.
| | - Ester Guaus
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain
| | - Juan Torrent-Burgués
- Group of Molecular and Industrial Biotechnology, Dpt. Chemical Engineering, Universitat Politècnica de Catalunya, 08222 Terrassa, Barcelona, Spain
| |
Collapse
|
5
|
van Eerden FJ, de Jong DH, de Vries AH, Wassenaar TA, Marrink SJ. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1319-30. [PMID: 25749153 DOI: 10.1016/j.bbamem.2015.02.025] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 11/17/2022]
Abstract
The thylakoid membrane is mainly composed of non-common lipids, so called galactolipids. Despite the importance of these lipids for the function of the photosynthetic reaction centers, the molecular organization of these membranes is largely unexplored. Here we use multiscale molecular dynamics simulations to characterize the thylakoid membrane of both cyanobacteria and higher plants. We consider mixtures of up to five different galactolipids plus phosphatidylglycerol to represent these complex membranes. We find that the different lipids generally mix well, although nanoscale heterogeneities are observed especially in case of the plant membrane. The fluidity of the cyanobacterial membrane is markedly reduced compared to the plant membrane, even considering elevated temperatures at which thermophilic cyanobacteria are found. We also find that the plant membrane more readily undergoes a phase transformation to an inverted hexagonal phase. We furthermore characterized the conformation and dynamics of the cofactors plastoquinone and plastoquinol, revealing of the fast flip-flop rates for the non-reduced form. Together, our results provide a molecular view on the dynamical organization of the thylakoid membrane.
Collapse
Affiliation(s)
- Floris J van Eerden
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
| | - Djurre H de Jong
- Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Tsjerk A Wassenaar
- Computational Biology, Department of Biology, University of Erlangen-Nürnberg, Staudtstr. 5, 91052 Erlangen Germany
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Kansy M, Wilhelm C, Goss R. Influence of thylakoid membrane lipids on the structure and function of the plant photosystem II core complex. PLANTA 2014; 240:781-96. [PMID: 25063517 DOI: 10.1007/s00425-014-2130-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 07/14/2014] [Indexed: 05/18/2023]
Abstract
MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.
Collapse
Affiliation(s)
- Marcel Kansy
- Department of Plant Physiology, Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | | | | |
Collapse
|
7
|
Demé B, Cataye C, Block MA, Maréchal E, Jouhet J. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J 2014; 28:3373-83. [PMID: 24736411 DOI: 10.1096/fj.13-247395] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Thylakoid membranes, the universal structure where photosynthesis takes place in all oxygenic photosynthetic organisms from cyanobacteria to higher plants, have a unique lipid composition. They contain a high fraction of 2 uncharged glycolipids, the galactoglycerolipids mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), and an anionic sulfolipid, sulfoquinovosediacylglycerol (SQDG). A remarkable feature of the evolution from cyanobacteria to higher plants is the conservation of MGDG, DGDG, SQDG, and phosphatidylglycerol (PG), the major phospholipid of thylakoids. Using neutron diffraction on reconstituted thylakoid lipid extracts, we observed that the thylakoid lipid mixture self-organizes as a regular stack of bilayers. This natural lipid mixture was shown to switch from hexagonal II toward lamellar phase on hydration. This transition and the observed phase coexistence are modulated by the fine-tuning of the lipid profile, in particular the MGDG/DGDG ratio, and by the hydration. Our analysis highlights the critical role of DGDG as a contributing component to the membrane stacking via hydrogen bonds between polar heads of adjacent bilayers. DGDG interactions balance the repulsive electrostatic contribution of the charged lipids PG and SQDG and allow the persistence of regularly stacked membranes at high hydration. In developmental contexts or in response to environmental variations, these properties can contribute to the highly dynamic flexibility of plastid structure.
Collapse
Affiliation(s)
- Bruno Demé
- Institut Laue-Langevin, Grenoble, France
| | - Céline Cataye
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5168, Univ. Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Institut National de Recherche Agronomique (INRA), USC 1359, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Maryse A Block
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5168, Univ. Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Institut National de Recherche Agronomique (INRA), USC 1359, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Eric Maréchal
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5168, Univ. Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Institut National de Recherche Agronomique (INRA), USC 1359, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| | - Juliette Jouhet
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5168, Univ. Grenoble Alpes, Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), and Institut National de Recherche Agronomique (INRA), USC 1359, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble, France
| |
Collapse
|
8
|
|
9
|
|
10
|
Popova AV, Hincha DK. Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state. BMC BIOPHYSICS 2011; 4:11. [PMID: 21595868 PMCID: PMC3116483 DOI: 10.1186/2046-1682-4-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/10/2011] [Indexed: 11/21/2022]
Abstract
BACKGROUND Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (HII) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Here, we present a study of the thermotropic phase behavior of the nonbilayer lipids egg phosphatidylethanolamine (EPE) and monogalactosyldiacylglycerol (MGDG) with a focus on interactions between the lipid molecules in the interfacial and headgroup regions. RESULTS Liposomes were investigated in the dry state by Fourier-transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Dry EPE showed a gel to liquid-crystalline phase transition below 0°C and a liquid-crystalline to HII transition at 100°C. MGDG, on the other hand, was in the liquid-crystalline phase down to -30°C and showed a nonbilayer transition at about 85°C. Mixtures (1:1 by mass) with two different phosphatidylcholines (PC) formed bilayers with no evidence for nonbilayer transitions up to 120°C. FTIR spectroscopy revealed complex interactions between the nonbilayer lipids and PC. Strong H-bonding interactions occurred between the sugar headgroup of MGDG and the phosphate, carbonyl and choline groups of PC. Similarly, the ethanolamine moiety of EPE was H-bonded to the carbonyl and choline groups of PC and probably interacted through charge pairing with the phosphate group. CONCLUSIONS This study provides a comprehensive characterization of dry membranes containing the two most important nonbilayer lipids (PE and MGDG) in living cells. These data will be of particular relevance for the analysis of interactions between membranes and low molecular weight solutes or soluble proteins that are presumably involved in cellular protection during anhydrobiosis.
Collapse
Affiliation(s)
- Antoaneta V Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
- Institute of Biophysics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam, Germany
| |
Collapse
|
11
|
Selstam E, Brain APR, Williams WP. The relationship between different spectral forms of the protochlorophyllide oxidoreductase complex and the structural organisation of prolamellar bodies isolated from Zea mays. PHOTOSYNTHESIS RESEARCH 2011; 108:47-59. [PMID: 21505944 DOI: 10.1007/s11120-011-9653-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/04/2011] [Indexed: 05/30/2023]
Abstract
Incubation of prolamellar bodies (PLB) in high-salt media leads to changes in PLB structure and properties of their protochlorophyllide oxidoreductase-protochlorophyllide (POR-PChlide) complex. The paracrystalline organisation typical of PLB is disrupted and NADPH dissociates from photoconvertible POR-PChlide, with absorption maxima at 640 and 650 nm (POR-PChlide (640/650)), and a non-photoconvertible form, with absorption maxima at 635 nm (POR-PChlide (635)), is formed. These effects are strongly dependent on the valence of the cation of the perturbing salt, indicating that they involve surface double layers effects. They are also influenced by the nature of the anion and by high concentrations of non-electrolytes, suggesting the involvement of surface hydration effects. The structural changes are largely, if not entirely, independent of the presence of excess NADPH. Changes to the POR-PChlide complex, however, are strongly inhibited by excess NADPH suggesting that the two sets of changes may not be causally linked. As long as the disruption is not too great, the structural changes seen on incubation of PLB in high salt media lacking excess NADPH are reversed on removal of the high salt perturbation. This reversal is independent of the presence or absence of added NADPH. Reformation of photoconvertible POR-PChlide, however, requires the presence of NADPH. The reformation of paracrystalline PLB in the absence of NADPH strongly indicates that preservation of PLB structure, in isolated PLB preparations at least, is independent of the presence or absence of POR-PChlide (650).
Collapse
Affiliation(s)
- Eva Selstam
- Umeå Plant Science Centre, Department of Plant Physiology, University of Umeå, Umeå, Sweden.
| | | | | |
Collapse
|
12
|
Schaller S, Latowski D, Jemioła-Rzemińska M, Dawood A, Wilhelm C, Strzałka K, Goss R. Regulation of LHCII aggregation by different thylakoid membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:326-35. [PMID: 21215252 DOI: 10.1016/j.bbabio.2010.12.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/06/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
In the present study the influence of the lipid environment on the organization of the main light-harvesting complex of photosystem II (LHCII) was investigated by 77K fluorescence spectroscopy. Measurements were carried out with a lipid-depleted and highly aggregated LHCII which was supplemented with the different thylakoid membrane lipids. The results show that the thylakoid lipids are able to modulate the spectroscopic properties of the LHCII aggregates and that the extent of the lipid effect depends on both the lipid species and the lipid concentration. Addition of the neutral galactolipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) seems to induce a modification of the disorganized structures of the lipid-depleted LHCII and to support the aggregated state of the complex. In contrast, we found that the anionic lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) exert a strong disaggregating effect on the isolated LHCII. LHCII disaggregation was partly suppressed under a high proton concentration and in the presence of cations. The strongest suppression was visible at the lowest pH value (pH 5) and the highest Mg(2+) concentration (40 mM) used in the present study. This suggests that the negative charge of the anionic lipids in conjunction with negatively charged domains of the LHCII proteins is responsible for the disaggregation. Additional measurements by photon correlation spectroscopy and sucrose gradient centrifugation, which were used to gain information about the size and molecular mass of the LHCII aggregates, confirmed the results of the fluorescence spectroscopy. LHCII treated with MGDG and DGDG formed an increased number of aggregates with large particle sizes in the micromm-range, whereas the incubation with anionic lipids led to much smaller LHCII particles (around 40 nm in the case of PG) with a homogeneous distribution.
Collapse
Affiliation(s)
- Susann Schaller
- Institute of Biology I, Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Solymosi K, Schoefs B. Etioplast and etio-chloroplast formation under natural conditions: the dark side of chlorophyll biosynthesis in angiosperms. PHOTOSYNTHESIS RESEARCH 2010; 105:143-66. [PMID: 20582474 DOI: 10.1007/s11120-010-9568-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Accepted: 05/30/2010] [Indexed: 05/03/2023]
Abstract
Chloroplast development is usually regarded as proceeding from proplastids. However, direct or indirect conversion pathways have been described in the literature, the latter involving the etioplast or the etio-chloroplast stages. Etioplasts are characterized by the absence of chlorophylls (Chl-s) and the presence of a unique inner membrane network, the prolamellar body (PLB), whereas etio-chloroplasts contain Chl-s and small PLBs interconnected with chloroplast thylakoids. As etioplast development requires growth in darkness for several days, this stage is generally regarded as a nonnatural pathway of chloroplast development occurring only under laboratory conditions. In this article, we have reviewed the data in favor of the involvement of etioplasts and etio-chloroplasts as intermediary stage(s) in chloroplast formation under natural conditions, the molecular aspects of PLB formation and we propose a dynamic model for its regulation.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös University, Pázmány P. s. 1/C, 1117 Budapest, Hungary.
| | | |
Collapse
|
14
|
Vladkova R, Koynova R, Teuchner K, Tenchov B. Bilayer structural destabilization by low amounts of chlorophyll a. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1586-92. [DOI: 10.1016/j.bbamem.2010.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 11/16/2022]
|
15
|
Goss R, Nerlich J, Lepetit B, Schaller S, Vieler A, Wilhelm C. The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1839-54. [PMID: 19604599 DOI: 10.1016/j.jplph.2009.05.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 05/29/2009] [Indexed: 05/25/2023]
Abstract
The present study shows that thylakoid membranes of the diatom Cyclotella meneghiniana contain much higher amounts of negatively charged lipids than higher plant or green algal thylakoids. Based on these findings, we examined the influence of SQDG on the de-epoxidation reaction of the diadinoxanthin cycle and compared it with results from the second negatively charged thylakoid lipid PG. SQDG and PG exhibited a lower capacity for the solubilization of the hydrophobic xanthophyll cycle pigment diadinoxanthin than the main membrane lipid MGDG. Although complete pigment solubilization took place at higher concentrations of the negatively charged lipids, SQDG and PG strongly suppressed the de-epoxidation of diadinoxanthin in artificial membrane systems. In in vitro assays employing the isolated diadinoxanthin cycle enzyme diadinoxanthin de-epoxidase, no or only a very weak de-epoxidation reaction was observed in the presence of SQDG or PG, respectively. In binary mixtures of the inverted hexagonal phase forming lipid MGDG with the negatively charged bilayer lipids, comparable suppression took place. This is in contrast to binary mixtures of MGDG with the neutral bilayer lipids DGDG and PC, where rapid and efficient de-epoxidation was observed. In complex lipid mixtures resembling the lipid composition of the native diatom thylakoid membrane, we again found strong suppression of diadinoxanthin de-epoxidation due to the presence of SQDG or PG. We conclude that, in the native thylakoids of diatoms, a strict separation of the MGDG and SQDG domains must occur; otherwise, the rapid diadinoxanthin de-epoxidation observed in intact cells upon illumination would not be possible.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology I, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Krumova SB, Koehorst RBM, Bóta A, Páli T, van Hoek A, Garab G, van Amerongen H. Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2823-33. [PMID: 18929531 DOI: 10.1016/j.bbamem.2008.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 09/18/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022]
Abstract
The lipid packing of thylakoid membranes is an important factor for photosynthetic performance. However, surprisingly little is known about it and it is generally accepted that the bulk thylakoid lipids adopt the liquid-crystalline phase above -30 degrees C and that a phase transition occurs only above 45 degrees C. In order to obtain information on the nature of the lipid microenvironment and its temperature dependence, steady-state and time-resolved fluorescence measurements were performed on the fluorescence probe Merocyanine 540 (MC540) incorporated in isolated spinach thylakoids and in model lipid systems (dipalmitoyl phosphatidylcholine and dioleoyl phosphatidylethanolamine) adopting different phases. It is demonstrated that the degree and way of incorporation differs for most lipid phases--upon selective excitation at 570 nm, the amplitude of the fluorescence component that corresponds to membrane-incorporated MC540 is about 20% in gel-, 60% in rippled gel-, and 90% in liquid-crystalline and inverted hexagonal phase, respectively. For thylakoids, the data reveal hindered incorporation of MC540 (amplitude about 30% at 7 degrees C) and marked spectral heterogeneity at all temperatures. The incorporation of MC540 in thylakoids strongly depends on temperature. Remarkably, above 25 degrees C MC540 becomes almost completely extruded from the lipid environment, indicating major rearrangements in the membrane.
Collapse
Affiliation(s)
- Sashka B Krumova
- Wageningen University, Laboratory of Biophysics, P.O. Box 8128, 6700 ET Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
The influence of phase transitions in phosphatidylethanolamine models on the activity of violaxanthin de-epoxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1027-34. [DOI: 10.1016/j.bbamem.2007.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 12/03/2007] [Accepted: 12/06/2007] [Indexed: 11/21/2022]
|
19
|
Krumova SB, Dijkema C, de Waard P, Van As H, Garab G, van Amerongen H. Phase behavior of phosphatidylglycerol in spinach thylakoid membranes as revealed by 31P-NMR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:997-1003. [PMID: 18230332 DOI: 10.1016/j.bbamem.2008.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 12/07/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
Non-bilayer lipids account for about half of the total lipid content in chloroplast thylakoid membranes. This lends high propensity of the thylakoid lipid mixture to participate in different phases which might be functionally required. It is for instance known that the chloroplast enzyme violaxanthin de-epoxidase (VDE) requires a non-bilayer phase for proper functioning in vitro but direct evidence for the presence of non-bilayer lipid structures in thylakoid membranes under physiological conditions is still missing. In this work, we used phosphatidylglycerol (PG) as an intrinsic bulk lipid label for 31P-NMR studies to monitor lipid phases of thylakoid membranes. We show that in intact thylakoid membranes the characteristic lamellar signal is observed only below 20 degrees C. But at the same time an isotropic phase is present, which becomes even dominant between 14 and 28 degrees C despite the presence of fully functional large membrane sheets that are capable of generating and maintaining a transmembrane electric field. Tris-washed membranes show a similar behavior but the lamellar phase is present up to higher temperatures. Thus, our data show that the location of the phospholipids is not restricted to the bilayer phase and that the lamellar phase co-exists with a non-bilayer isotropic phase.
Collapse
Affiliation(s)
- Sashka B Krumova
- Wageningen University, Laboratory of Biophysics, PO Box 8128, 6700 ET Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Solymosi K, Smeller L, Ryberg M, Sundqvist C, Fidy J, Böddi B. Molecular rearrangement in POR macrodomains as a reason for the blue shift of chlorophyllide fluorescence observed after phototransformation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1650-8. [PMID: 17459331 DOI: 10.1016/j.bbamem.2007.02.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 02/26/2007] [Accepted: 02/28/2007] [Indexed: 10/23/2022]
Abstract
The activation energy and activation volume of the spectral blue shift subsequent to protochlorophyllide phototransformation (called Shibata shift in intact leaves) were studied in prolamellar body (PLB) and prothylakoid-(PT)-enriched membrane fractions prepared from dark-grown wheat (Triticum aestivum, L.) leaves. The measurements were done at 20, 30 and 40 degrees C and at various pressure values. The activation energy values were 181+/-8 kJ mol(-1) and 188+/-6 kJ mol(-1) for the PLBs and the PTs, respectively. The pressure stabilized the structure of the NADPH:protochlorophyllide oxidoreductase (POR) macrodomains; it prevented or slowed down the blue shift. There were no significant differences between the activation volumes of PLBs and PTs at 30 or 40 degrees C giving values around 100-125 ml mol(-1) which correspond to changes in the tertiary structure of proteins but also resemble the volume changes occurring during the disaggregation of protein dimers or oligomers, or during dissociation of peripheral membrane proteins from membranes. The small differences in the activation parameters of PLBs and PTs indicate that molecular rearrangements inside the POR macrodomains are the primary reasons of the fluorescence blue shift; however, their lipid microenvironment must be also important in the initialization of the shift.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Eötvös University, Pázmány P. sétány 1/C, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
21
|
Goss R, Latowski D, Grzyb J, Vieler A, Lohr M, Wilhelm C, Strzalka K. Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:67-75. [PMID: 16843433 DOI: 10.1016/j.bbamem.2006.06.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 06/02/2006] [Accepted: 06/02/2006] [Indexed: 11/26/2022]
Abstract
In the present study, the solubility and enzymatic de-epoxidation of diadinoxanthin (Ddx) was investigated in three different artificial membrane systems: (1) Unilamellar liposomes composed of different concentrations of the bilayer forming lipid phosphatidylcholine (PC) and the inverted hexagonal phase (H(II) phase) forming lipid monogalactosyldiacylglycerol (MGDG), (2) liposomes composed of PC and the H(II) phase forming lipid phosphatidylethanolamine (PE), and (3) an artificial membrane system composed of digalactosyldiacylglycerol (DGDG) and MGDG, which resembles the lipid composition of the natural thylakoid membrane. Our results show that Ddx de-epoxidation strongly depends on the concentration of the inverted hexagonal phase forming lipids MGDG or PE in the liposomes composed of PC or DGDG, thus indicating that the presence of inverted hexagonal structures is essential for Ddx de-epoxidation. The difference observed for the solubilization of Ddx in H(II) phase forming lipids compared with bilayer forming lipids indicates that Ddx is not equally distributed in the liposomes composed of different concentrations of bilayer versus non-bilayer lipids. In artificial membranes with a high percentage of bilayer lipids, a large part of Ddx is located in the membrane bilayer. In membranes composed of equal proportions of bilayer and H(II) phase forming lipids, the majority of the Ddx molecules is located in the inverted hexagonal structures. The significance of the pigment distribution and the three-dimensional structure of the H(II) phase for the de-epoxidation reaction is discussed, and a possible scenario for the lipid dependence of Ddx (and violaxanthin) de-epoxidation in the native thylakoid membrane is proposed.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology I, Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Goss R, Lohr M, Latowski D, Grzyb J, Vieler A, Wilhelm C, Strzalka K. Role of Hexagonal Structure-Forming Lipids in Diadinoxanthin and Violaxanthin Solubilization and De-Epoxidation. Biochemistry 2005; 44:4028-36. [PMID: 15751979 DOI: 10.1021/bi047464k] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we have examined the influence of different lipids on the solubility of the xanthophyll cycle pigments diadinoxanthin (Ddx) and violaxanthin (Vx) and on the efficiency of Ddx and Vx de-epoxidation by the enzymes Vx de-epoxidase (VDE) from wheat and Ddx de-epoxidase (DDE) from the diatom Cyclotella meneghiniana, respectively. Our results show that the lipids MGDG and PE are able to solubilize both xanthophyll cycle pigments in an aqueous medium. Substrate solubilization is essential for de-epoxidase activity, because in the absence of MGDG or PE Ddx and Vx are present in an aggregated form, with limited accessibility for DDE and VDE. Our results also show that the hexagonal structure-forming lipids MGDG and PE are able to solubilize Ddx and Vx at much lower lipid concentrations than bilayer-forming lipids DGDG and PC. We furthermore found that, in the presence of MGDG or PE, Ddx is much more solubilizable than Vx. This substantial difference in Ddx and Vx solubility directly affects the respective de-epoxidation reactions. Ddx de-epoxidation by the diatom DDE is saturated at much lower MGDG or PE concentrations than Vx de-epoxidation by the higher-plant VDE. Another important result of our study is that bilayer-forming lipids DGDG and PC are not able to induce efficient xanthophyll de-epoxidation. Even in the presence of high concentrations of DGDG or PC, where Ddx and Vx are completely solubilized, a strongly inhibited Ddx de-epoxidation is observed, while Vx de-epoxidation by VDE is completely absent. This indicates that the inverted hexagonal phase domains provided by lipid MGDG or PE are essential for de-epoxidase activity. We conclude that in the natural thylakoid membrane MGDG serves to solubilize the xanthophyll cycle pigments and furthermore provides inverted hexagonal structures associated with the membrane bilayer, which are essential for efficient xanthophyll de-epoxidase activity.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology I, Plant Physiology, University of Leipzig, Johannisallee 21-23, 04103 Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
23
|
Hincha DK. Effects of calcium-induced aggregation on the physical stability of liposomes containing plant glycolipids. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1611:180-6. [PMID: 12659959 DOI: 10.1016/s0005-2736(03)00053-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Membranes containing either negatively charged lipids or glycolipids can be aggregated by millimolar concentrations of Ca(2+). In the case of membranes made from the negatively charged phospholipid phosphatidylserine, aggregation leads to vesicle fusion and leakage. However, some glycolipid-containing biological membranes such as plant chloroplast thylakoid membranes naturally occur in an aggregated state. In the present contribution, the effect of Ca(2+)-induced aggregation on membrane stability during freezing and in highly concentrated salt solutions (NaCl+/-CaCl(2)) has been determined in membranes containing different fractions of uncharged galactolipids, or a negatively charged sulfoglucolipid, or the negatively charged phospholipid phosphatidylglycerol (PG), in membranes made from the uncharged phospholipid phosphatidylcholine (PC). In the case of the glycolipids, aggregation did not lead to fusion or leakage even under stress conditions, while it did lead to fusion and leakage in PG-containing liposomes. Liposomes made from a mixture of glycolipids and PG that approximates the lipid composition of thylakoids were very unstable, both during freezing and at high solute concentrations and leakage and fusion were increased in the presence of Ca(2+). Collectively, the data indicate that the effects of Ca(2+)-induced aggregation of liposomes on membrane stability depend critically on the type of lipid involved in aggregation. While liposomes aggregated through glycolipids are highly stable, those aggregated through negatively charged lipids are severely destabilized.
Collapse
Affiliation(s)
- Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14424 Potsdam, Germany.
| |
Collapse
|
24
|
Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M, Kostecka-Gugała A, Strzałka K. Kinetics of violaxanthin de-epoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4656-65. [PMID: 12230579 DOI: 10.1046/j.1432-1033.2002.03166.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper describes violaxanthin de-epoxidation in model lipid bilayers. Unilamellar egg yolk phosphatidylcholine (PtdCho) vesicles supplemented with monogalactosyldiacylglycerol were found to be a suitable system for studying this reaction. Such a system resembles more the native thylakoid membrane and offers better possibilities for studying kinetics and factors controlling de-epoxidation of violaxanthin than a system composed only ofmonogalactosyldiacylglycerol and is commonly used in xanthophyll cycle studies. The activity of violaxanthin de-epoxidase (VDE) strongly depended on the ratio of monogalactosyldiacylglycerol to PtdCho in liposomes. The mathematical model of violaxanthin de-epoxidation was applied to calculate the probability of violaxanthin to zeaxanthin conversion at different phases of de-epoxidation reactions. Measurements of deepoxidation rate and EPR-spin label study at different temperatures revealed that dynamic properties of the membrane are important factors that might control conversion of violaxanthin to antheraxanthin. A model of the molecular mechanism of violaxanthin de-epoxidation where the reversed hexagonal structures (mainly created by monogalactosyldiacylglycerol) are assumed to be required for violaxanthin conversion to zeaxanthin is proposed. The presence of monogalactosyldiacylglycerol reversed hexagonal phase was detected in the PtdCho/monogalactosyldiacylglycerol liposomes membrane by 31P-NMR studies. The availability of violaxanthin for de-epoxidation is a diffusion-dependent process controlled by membrane fluidity. The significance of the presented results for understanding themechanism of violaxanthin de-epoxidation in native thylakoid membranes is discussed.
Collapse
Affiliation(s)
- Dariusz Latowski
- Department of Plant Physiology and Biochemistry, The Jan Zurzycki Institute of Molecular Biology and Biotechnology, Jagiellonian University, Kraków, Poland
| | | | | | | | | | | |
Collapse
|
25
|
Selstam E, Schelin J, Brain T, Williams WP. The effects of low pH on the properties of protochlorophyllide oxidoreductase and the organization of prolamellar bodies of maize (Zea mays). EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2336-46. [PMID: 11985616 DOI: 10.1046/j.1432-1033.2002.02897.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prolamellar bodies (PLB) contain two photochemically active forms of the enzyme protochlorophyllide oxidoreductase POR-PChlide640 and POR-PChlide650 (the spectral forms of POR-Chlide complexes with absorption maxima at the indicated wavelengths). Resuspension of maize PLB in media with a pH below 6.8 leads to a rapid conversion of POR-PChlide650 to POR-PChlide640 and a dramatic re-organization of the PLB membrane system. In the absence of excess NADPH, the absorption maximum of the POR complex undergoes a further shift to about 635 nm. This latter shift is reversible on the re-addition of NADPH with a half-saturation value of about 0.25 mm NADPH for POR-PChlide640 reformation. The disappearance of POR-PChlide650 and the reorganization of the PLB, however, are irreversible. Restoration of low-pH treated PLB to pH 7.5 leads to a further breakdown down of the PLB membrane and no reformation of POR-PChlide650. Related spectral changes are seen in PLB aged at room temperature at pH 7.5 in NADPH-free assay medium. The reformation of POR-PChlide650 in this system is readily reversible on re-addition of NADPH with a half-saturation value about 1.0 microm. Comparison of the two sets of changes suggest a close link between the stability of the POR-PChlide650, membrane organization and NADPH binding. The low-pH driven spectral changes seen in maize PLB are shown to be accelerated by adenosine AMP, ADP and ATP. The significance of this is discussed in terms of current suggestions of the possible involvement of phosphorylation (or adenylation) in changes in the aggregational state of the POR complex.
Collapse
Affiliation(s)
- Eva Selstam
- Umeå Plant Science Center, Department of Plant Physiology, University of Umeå, Sweden
| | | | | | | |
Collapse
|
26
|
Gounaris K, Sundby C, Andersson B, Barber J. Lateral heterogeneity of polar lipids in the thylakoid membranes of spinach chloroplasts. FEBS Lett 2001. [DOI: 10.1016/0014-5793(83)80271-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Thomas PG, Brain AP, Quinn PJ, Williams W. Low pH and phospholipase A2treatment induce the phase-separation of non-bilayer lipids within pea chloroplast membranes. FEBS Lett 2001. [DOI: 10.1016/0014-5793(85)80976-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Steponkus PL, Uemura M, Joseph RA, Gilmour SJ, Thomashow MF. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. Proc Natl Acad Sci U S A 1998; 95:14570-5. [PMID: 9826741 PMCID: PMC24414 DOI: 10.1073/pnas.95.24.14570] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Constitutive expression of the cold-regulated COR15a gene of Arabidopsis thaliana results in a significant increase in the survival of isolated protoplasts frozen over the range of -4.5 to -7 degreesC. The increased freezing tolerance is the result of a decreased incidence of freeze-induced lamellar-to-hexagonal II phase transitions that occur in regions where the plasma membrane is brought into close apposition with the chloroplast envelope as a result of freeze-induced dehydration. Moreover, the mature polypeptide encoded by this gene, COR15am, increases the lamellar-to-hexagonal II phase transition temperature of dioleoylphosphatidylethanolamine and promotes formation of the lamellar phase in a lipid mixture composed of the major lipid species that comprise the chloroplast envelope. We propose that COR15am, which is located in the chloroplast stroma, defers freeze-induced formation of the hexagonal II phase to lower temperatures (lower hydrations) by altering the intrinsic curvature of the inner membrane of the chloroplast envelope.
Collapse
Affiliation(s)
- P L Steponkus
- Department of Soil, Crop and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
29
|
Thompson SJ, Kim SJ, Robinson C. Sec-independent insertion of thylakoid membrane proteins. Analysis of insertion forces and identification of a loop intermediate involving the signal peptide. J Biol Chem 1998; 273:18979-83. [PMID: 9668077 DOI: 10.1074/jbc.273.30.18979] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A group of membrane proteins are synthesized with cleavable signal sequences but inserted into the thylakoid membrane by an unusual Sec/SRP-independent mechanism. In this report we describe a key intermediate in the insertion of one such protein, photosystem II subunit W (PSII-W). A single mutation in the terminal cleavage site partially blocks processing and leads to the formation of an intermediate-size protein in the thylakoid membrane during chloroplast import assays. This protein is in the form of a loop structure: the N and C termini are exposed on the stromal face, whereas the cleavage site has been translocated into the lumen. In this respect the insertion of this protein resembles that of M13 procoat, which also adopts a loop structure during insertion, and we present preliminary evidence that a similar mechanism is used by another thylakoid protein, PSII-X. However, whereas the negatively charged region of procoat is translocated by an apparently electrophoretic mechanism using the DeltamuH+, the corresponding region of PSII-W is equally acidic but insertion is DeltamuH+ independent. We furthermore show that neutralization of this region has no apparent effect on the insertion process. We propose that a central element in this insertion mechanism is a loop structure whose formation is driven by hydrophobic interactions.
Collapse
Affiliation(s)
- S J Thompson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | |
Collapse
|
30
|
|
31
|
Gounaris K, Smith VP, Selkirk ME. Structural organisation and lipid composition of the epicuticular accessory layer of infective larvae of Trichinella spiralis. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1281:91-100. [PMID: 8652610 DOI: 10.1016/0005-2736(96)00022-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The epicuticle of infective larvae of Trichinella spiralis represents the interface between this intracellular nematode parasite and the cytosol of mammalian skeletal muscle. The macromolecular structures that make up the epicuticle were studied by freeze-fracture electron microscopy and compositional analysis. Three fracture planes were observed: one with a typical plasma membrane-type bilayer organisation which was overlaid by two extended layers of lipid in an inverted cylindrical configuration. This overall structure remained unchanged in response to variations in temperature between 20 degrees C and 45 degrees C. The lipid cylinders were on average 6.8 nm in diameter, with randomly-associated particles that were not dissociated by high-salt treatment, indicative of hydrophobically associated proteins. The majority of the lipids were non-polar, consisting of cholesterol, cholesterol esters, mono- and tri-glycerides, and free fatty acids. Three major classes of phospholipids were identified: phosphatidylethanolamine, phosphatidylglycerol and phosphatidylcholine. Total lipid extracts did not adopt an inverted cylindrical or micellar configuration on isolation, but formed flat sheets of lamellae as did the purified polar and non-polar fractions of the lipids. Isolated lipids did not undergo thermally-induced polymorphism between 20 degrees C and 60 degrees C and there was no pH dependency of the structures adopted. The fatty acid saturation levels of the phospholipids were compatible with the observation that they did not form polymorphic structures on isolation. We suggest that this unusual configuration is probably stabilised by the associated (glyco)proteins and may be required for selective permeation of nutrients from the host cell cytosol and/or for maintaining the high curvature of the parasite within the cell.
Collapse
Affiliation(s)
- K Gounaris
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK.
| | | | | |
Collapse
|
32
|
31P-NMR observation of the temperature and glycerol induced non-lamellar phase formation in wheat thylakoid membranes. J Biol Phys 1995. [DOI: 10.1007/bf00705595] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
33
|
Andersson B, Barber J. Composition, Organization, and Dynamics of Thylakoid Membranes. MOLECULAR PROCESSES OF PHOTOSYNTHESIS 1994. [DOI: 10.1016/s1569-2558(08)60394-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
34
|
Williams WP, Sanderson PW, Cunningham BA, Wolfe DH, Lis LJ. Phase behaviour of membrane lipids containing polyenoic acyl chains. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1148:285-90. [PMID: 8504122 DOI: 10.1016/0005-2736(93)90141-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The low-temperature thermal behaviour of di-18:2 phosphatidylethanolamine (di-18:2 PE) is shown to be characterized by similar broad low-enthalpy transitions to those previously reported for polyenoic samples of phosphatidylcholines (Keough and Kariel (1987) Biochim. Biophys. Acta 902, 11-18), and monogalactosyldiacylglycerol (Sanderson and Williams (1992) Biochim. Biophys. Acta. 1107, 77-85). Real-time X-ray diffraction measurements indicate that these transitions correspond to transitions between the gel (L beta) and liquid-crystal (L alpha) phases of the lipids. The gel phase of these lipids is, however, much more loosely packed than the corresponding phases of membrane lipids containing monoenoic or fully-saturated acyl chains. The low enthalpy and reduced co-operativity of the L alpha--> L beta phase transitions of the polyenoic lipids is attributed to the reduced contribution of van der Waals interactions between their acyl chains in the gel-state of these lipids. Comparison with the earlier results obtained for MGDG suggest that the acyl chains of polyenoic lipids can form well-ordered lattices but require the additional energy input associated with the formation of a hydrogen bond network between the lipid headgroups in order to do so.
Collapse
Affiliation(s)
- W P Williams
- Life Sciences Division, King's College London, Campden Hill, UK
| | | | | | | | | |
Collapse
|
35
|
Sanderson PW, Williams WP. Low-temperature phase behaviour of the major plant leaf lipid monogalactosyldiacylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1107:77-85. [PMID: 1616928 DOI: 10.1016/0005-2736(92)90331-f] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Heating and cooling thermograms of unsaturated MGDG samples isolated from the leaves of Vicia faba are surprisingly featureless. This reflects the low enthalpies associated with phase transitions in highly unsaturated lipids and the fact that these transitions, in the case of MGDG, are to a large extent masked by those associated with the freezing and melting of ice. Careful choice of thermal heating/cooling regimes, combined with the use of real-time X-ray diffraction and freeze-fracture measurements, permits a detailed analysis of the phase behaviour of the system. The phase behaviour of unsaturated MGDG samples is shown to be basically similar to that seen in saturated MGDG samples. The lipid which exists in the inverted hexagonal (HexII) liquid crystal phase at room temperature forms a highly disordered lamellar gel (L beta) phase on cooling to temperatures below about -15 degrees C. On reheating, this first reorganizes at a temperature of about -10 degrees C to form a well-defined Lc1 phase. Above about -2 degrees C, this melts to re-form the HexII phase. Samples re-cooled from temperatures between -2 degrees C and 14 degrees C revert directly to the Lc1 phase while samples cooled from higher temperatures form the L beta phase. This reflects the fact that the former samples contain small amounts of unmelted Lc1 phase lipid. The implications of these observations are discussed in terms of the general problems associated with the measurement of low-temperature phase behaviour of membrane lipids.
Collapse
Affiliation(s)
- P W Sanderson
- Biomolecular Sciences Division, King's College London, UK
| | | |
Collapse
|
36
|
Induction of non-bilayer lipid phase separations in chloroplast thylakoid membranes by compatible co-solutes and its relation to therthermal stability of Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1992. [DOI: 10.1016/0005-2728(92)90210-s] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
MgCl2-induced reversal of oxygen evolution decay in photosystem II particles incubated with phosphatidylglycerol vesicles at high lipid/photosystem II ratio. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1991. [DOI: 10.1016/1011-1344(91)80038-j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
38
|
Biochemical and biophysical properties of thylakoid acyl lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1991. [DOI: 10.1016/s0005-2728(09)91002-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Webb MS, Green BR. Effects of neutral and anionic lipids on digalactosyldiacylglycerol vesicle aggregation. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1030:231-7. [PMID: 2261485 DOI: 10.1016/0005-2736(90)90299-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously reported that large unilamellar liposomes made from the neutral galactolipid digalactosyldiacylglycerol (DGDG) will aggregate in the presence of monovalent or divalent cations, behavior that would not have been predicted for an uncharged lipid (Webb et al. (1988) Biochim. Biophys. Acta 938, 323-333). In this paper, the effects of including the other major thylakoid lipids on the Mg2+ concentration required for aggregation of DGDG vesicles has been examined. Addition of the neutral, hexagonal-II phase preferring lipid monogalactosyldiacylglycerol (MGDG) to DGDG up to 50 mol% had no effect, suggesting that the MGDG head group is as effective in causing aggregation as the DGDG head group. Addition of 0.5 to 5.0 mol% of either of the two anionic lipids phosphatidylglycerol (PG) or sulfoquinovosyldiacylglycerol (SQDG) inhibited the aggregation of DGDG vesicles, probably by the development of an electrostatic potential. Phosphatidylcholine (PC) in amounts up to 25 mol% did not inhibit or promote aggregation. Vesicles with a composition similar to that of thylakoids (DGDG/MGDG/SQDG/PG, 1:2:0.5:0.5) required 65 mM MgCl2 in the presence of 200 mM KCl, i.e., higher concentrations than are present in the chloroplast stroma. If MGDG made up more than 25 mol% of any combination of lipids, vesicle aggregation could not be reversed by dilution. These results are consistent with cations playing a role in mediating the close approach of bilayers via an effect on head-group hydration and head-group interaction between bilayers.
Collapse
Affiliation(s)
- M S Webb
- Department of Botany, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
40
|
Increased rates of lipid exchange between Mycoplasma capricolum membranes and vesicles in relation to the propensity of forming nonbilayer lipid structures. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77230-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
Seddon JM. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1031:1-69. [PMID: 2407291 DOI: 10.1016/0304-4157(90)90002-t] [Citation(s) in RCA: 775] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- J M Seddon
- Chemistry Department, The University, Southampton, U.K
| |
Collapse
|
42
|
Quinn PJ. Principles of membrane stability and phase behavior under extreme conditions. J Bioenerg Biomembr 1989; 21:3-19. [PMID: 2651426 DOI: 10.1007/bf00762209] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Biological membranes consist of a complex assortment of lipids and proteins. The arrangement of the components, particularly in regard to their lateral disposition in the plane of the membrane under physiological conditions, is dependent on the phase behavior of the different membrane lipids and the way that this behavior is modified by interaction with other membrane components and electrolytes in the aqueous medium. Irreversible phase separation of components within the membrane may result from exposure to extreme environmental conditions including temperature, pressure, or electrolyte concentration. The principles underlying the phase-mixing behavior of model membrane systems can be used to provide useful information about the factors that determine the stability of biomembranes under physiological and non-physiological conditions. These data are reviewed and used to predict events that take place when membranes are exposed to environmental stress.
Collapse
Affiliation(s)
- P J Quinn
- Department of Biochemistry, King's College London, United Kingdom
| |
Collapse
|
43
|
Permeability of liposomes composed of binary mixtures of monogalactosyldiacylglycerol and digalactosyldiacylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1988. [DOI: 10.1016/0005-2736(88)90089-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Webb MS, Tilcock C, Green B. Salt-mediated interactions between vesicles of the thylakoid lipid digalactosyldiacylglycerol. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 1988. [DOI: 10.1016/0005-2736(88)90130-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Sprague SG. Structural and functional consequences of galactolipids on thylakoid membrane organization. J Bioenerg Biomembr 1987; 19:691-703. [PMID: 3320041 DOI: 10.1007/bf00762303] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Photosynthetic membranes of higher plant chloroplasts are composed primarily of polar, but uncharged, galactolipids unlike most mammalian membranes which contain large amounts of phosphatidylcholine. It is unclear what role(s) the galactolipids play in maintaining the differentiated thylakoid membranes, or in stabilizing the photosynthetically active enzyme complexes. Some of the membrane complexes show no lipid selectivity for maintaining structural or functional integrity. Others are poisoned or dissociated in the presence of high concentrations of a trace lipid class. The efficiency of energy transfer and the reconstitution of protein complexes into liposomes are dependent on the lipid class employed. The lipids are asymmetrically arranged along and across the thylakoid membranes but not as distinctly as the proteins.
Collapse
Affiliation(s)
- S G Sprague
- Department of Biochemistry, West Virginia University, School of Medicine, Morgantown 26506
| |
Collapse
|
46
|
Abstract
The phase behavior of the main classes of polar lipids found in the photosynthetic membranes of higher plants and algae is reviewed and compared to that of binary lipid mixtures and total lipid extracts of such membranes. Particular interest is paid to the way in which factors such as temperature and acyl chain saturation influence the phase behavior of these lipids and the implications this has in terms of the ability of photosynthetic membranes to resist environmental stress.
Collapse
Affiliation(s)
- W P Williams
- Department of Biochemistry, King's College London, U.K
| | | |
Collapse
|
47
|
|
48
|
Isomaa B, Hägerstrand H, Paatero G. Shape transformations induced by amphiphiles in erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 899:93-103. [PMID: 3567196 DOI: 10.1016/0005-2736(87)90243-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Shape alterations induced in human erythrocytes by cationic, anionic, zwitterionic and nonionic amphiphiles (C10-C16) at antihaemolytic concentrations (CAH50 and CAHmax) and at a slightly lytic concentration (2-10% haemolysis) were studied. Anionic (sodium alkyl sulphates) and zwitterionic amphiphiles (3-(alkyldimethylammonio)-1-propanesulfonates) proved to be potent echinocytogenic agents. Among the nonionic amphiphiles there were potent stomatocytogenicagents (octaethyleneglycol alkyl ethers, pentaethyleneglycol dodecyl ether), one potent echinocytogenic agent (dodecyl D-maltoside) and one weak echinocytogenic agent (decyl beta-D-glucopyranoside). Shape alterations induced by cationic amphiphiles (alkyltrimethylammonium bromides, cetylpyridinium chloride and dodecylamine hydrochloride) showed a strong time-dependence. These amphiphiles immediately induced strongly crenated erythrocytes which during incubation shifted to less crenated erythrocytes or to stomatocytes. All of the echinocytogenic amphiphiles induced echinocytes immediately, and there were only small alterations of the induced shape during incubation. Among the stomatocytogenic amphiphiles there were some that induced stomatocytes immediately or after a short lag time while others first passed the erythrocytes through echinocytic stages before stomatocytic shapes were attained. Erythrocytes treated with amphiphiles did not recover their normal discoid shape following repeated washing and reincubation for 1 h in amphiphile-free medium. Our study shows that shape alterations induced by amphiphiles in erythrocytes cannot be explained solely by assuming a selective intercalation of differently charged amphiphiles into the monolayers of the lipid bilayer as suggested in the bilayer couple hypothesis (Sheetz, M.P. and Singer, S.J. (1976) J. Cell Biol. 70, 247-251). We suggest that amphiphiles, when intercalated into the lipid bilayer, trigger a rapid formation of intrabilayer non-bilayer phases which protect the bilayer against a collapse and bring about a transbilayer redistribution of intercalated amphiphiles as well as of bilayer lipids.
Collapse
|
49
|
Heemskerk JW, Jacobs FH, Scheijen MA, Helsper JP, Wintermans JF. Characterization of galactosyltransferases in spinach chloroplast envelopes. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0005-2760(87)90194-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Dea P, Pearson LT, Caffrey M, Chan SI. Effect of chlorophyll a on the phase behavior of hydrated monogalactosyldiacylglycerols. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 896:11-8. [PMID: 3790583 DOI: 10.1016/0005-2736(87)90350-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We have studied the effect of chlorophyll a (chl a) on the X-ray diffraction patterns and the appearance of freeze-fracture electron micrographs of aqueous dispersions of monogalactosyldiacylglycerols (MGDG), the most abundant lipid in the thylakoid membrane. In MGDG systems containing 0-18 mol% of chl a, the diffraction patterns indicate the presence of a well-ordered reverse hexagonal phase. When 30 mol% of chl a was incorporated into the MGDG, the low-angle X-ray diffraction lines of the hexagonal lattice were slightly broadened and were accompanied by additional weak lines. With higher mol percents of chl a, the low-angle lines could no longer be indexed on a hexagonal or lamellar lattice. The freeze-fracture electron micrographs of similar samples showed that the patterns characteristic of the reverse hexagonal phase of an aqueous dispersion of pure MGDG were replaced by large liposomes, the fracture pattern of which is circular. We conclude that chl a in excess of 20 mol% destabilized the orderly reverse hexagonal phase of aqueous MGDG dispersions and disturbed the long-range order of the lipid array. These results are summarized in a temperature-composition isobaric phase diagram over a temperature range of -60 degrees C to 60 degrees C.
Collapse
|