1
|
El Haber M, Gérard V, Kleinheins J, Ferronato C, Nozière B. Measuring the Surface Tension of Atmospheric Particles and Relevant Mixtures to Better Understand Key Atmospheric Processes. Chem Rev 2024; 124:10924-10963. [PMID: 39177157 PMCID: PMC11467905 DOI: 10.1021/acs.chemrev.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
Aerosol and aqueous particles are ubiquitous in Earth's atmosphere and play key roles in geochemical processes such as natural chemical cycles, cloud and fog formation, air pollution, visibility, climate forcing, etc. The surface tension of atmospheric particles can affect their size distribution, condensational growth, evaporation, and exchange of chemicals with the atmosphere, which, in turn, are important in the above-mentioned geochemical processes. However, because measuring this quantity is challenging, its role in atmospheric processes was dismissed for decades. Over the last 15 years, this field of research has seen some tremendous developments and is rapidly evolving. This review presents the state-of-the-art of this subject focusing on the experimental approaches. It also presents a unique inventory of experimental adsorption isotherms for over 130 mixtures of organic compounds in water of relevance for model development and validation. Potential future areas of research seeking to better determine the surface tension of atmospheric particles, better constrain laboratory investigations, or better understand the role of surface tension in various atmospheric processes, are discussed. We hope that this review appeals not only to atmospheric scientists but also to researchers from other fields, who could help identify new approaches and solutions to the current challenges.
Collapse
Affiliation(s)
- Manuella El Haber
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Violaine Gérard
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Judith Kleinheins
- Institute
for Atmospheric and Climate Science, ETH Zürich, Universitätstrasse 16, 8092 Zürich, Switzerland
| | - Corinne Ferronato
- Institut
de Recherches sur l’Environnement et la Catalyse de Lyon (IRCELYON),
CNRS and Université Lyon 1, Villeurbanne 69626, France
| | - Barbara Nozière
- Department
of Chemistry, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| |
Collapse
|
2
|
Moradi M, Yamini Y. Surfactant roles in modern sample preparation techniques: A review. J Sep Sci 2012; 35:2319-40. [DOI: 10.1002/jssc.201200368] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/23/2012] [Accepted: 05/24/2012] [Indexed: 11/09/2022]
|
3
|
Mukherjee P, Padhan SK, Dash S, Patel S, Mishra BK. Clouding behaviour in surfactant systems. Adv Colloid Interface Sci 2011; 162:59-79. [PMID: 21296314 DOI: 10.1016/j.cis.2010.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 12/20/2010] [Accepted: 12/28/2010] [Indexed: 11/16/2022]
Abstract
A study on the phenomenon of clouding and the applications of cloud point technology has been thoroughly discussed. The phase behaviour of clouding and various methods adopted for the determination of cloud point of various surfactant systems have been elucidated. The systems containing anionic, cationic, nonionic surfactants as well as microemulsions have been reviewed with respect to their clouding phenomena and the effects of structural variation in the surfactant systems have been incorporated. Additives of various natures control the clouding of surfactants. Electrolytes, nonelectrolytes, organic substances as well as ionic surfactants, when present in the surfactant solutions, play a major role in the clouding phenomena. The review includes the morphological study of clouds and their applications in the extraction of trace inorganic, organic materials as well as pesticides and protein substrates from different sources.
Collapse
Affiliation(s)
- Partha Mukherjee
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar, India
| | | | | | | | | |
Collapse
|
4
|
Sukalski KA, Nordlie RC. Glucose-6-phosphatase: two concepts of membrane-function relationship. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 62:93-117. [PMID: 2543189 DOI: 10.1002/9780470123089.ch3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- K A Sukalski
- Department of Biochemistry and Molecular Biology, University of North Dakota School of Medicine, Grand Forks 58202
| | | |
Collapse
|
5
|
Morifuji M, Sakai K, Sugiura K. Dietary whey protein modulates liver glycogen level and glycoregulatory enzyme activities in exercise-trained rats. Exp Biol Med (Maywood) 2005; 230:23-30. [PMID: 15618122 DOI: 10.1177/153537020523000103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study compared the effects of dietary whey protein with dietary casein or soy protein on glycogen storage and glycoregulatory enzyme activities in the liver of sedentary and exercise-trained rats. Male Sprague-Dawley rats (ca. 130 g) were divided into one sedentary and three exercise-trained groups, with eight animals in each group. Casein was provided as the source of dietary protein in the sedentary group while the exercise-trained groups were fed casein, whey, or soy protein. Rats in the exercise-trained groups ran for 30 mins/day, 4 days/week on a motor-driven treadmill. In the exercise-trained rats, animals fed whey protein had higher liver glycogen content than animals in the other two diet groups. Glucokinase activity was significantly higher in rats fed whey protein compared to that in rats fed soy protein, while glucose 6-phosphatase activity was significantly decreased in animals on the whey protein diet compared with those the other two diets. Although 6-phospho-fructokinase activity was significantly lower in the whey protein group than in the soy protein group, we found that fructose 1,6-bisphosphatase activity was significantly higher in the whey group compared with either the casein or soy groups. Pyruvate kinase activity in rats fed the casein diet was significantly higher than in rats fed either the whey or soy protein diets. In addition, hepatic alanine aminotransferase activity and serum alanine level were also increased in the whey protein group compared with the casein or soy protein groups. Taken together, these results demonstrate that the whey protein diet in exercise-trained rats results in significantly higher levels of liver glycogen, because of the combined effects of regulation of rate limiting glycolytic and gluconeogenic enzyme activities and activation of glycogenesis from alanine via alanine amino-transferase.
Collapse
Affiliation(s)
- Masashi Morifuji
- Meiji Seika Kaisha Ltd., Health and Bioscience Laboratories, 5-3-1 Chiyoda, Sakado-shi, Saitama 350-0289, Japan.
| | | | | |
Collapse
|
6
|
Trejo R, Delhumeau G. Calmodulin content, Ca2+-dependent calmodulin binding proteins, and testis growth: identification of Ca2+-dependent calmodulin binding proteins in primary spermatocytes. Mol Reprod Dev 1997; 48:127-36. [PMID: 9266769 DOI: 10.1002/(sici)1098-2795(199709)48:1<127::aid-mrd15>3.0.co;2-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In contrast with the transient pre-replicative increase in calmodulin (CaM) level observed in proliferative activated cells, postnatal development of rat testis was paralleled by 3 specific rises in CaM. The first one occurred between 5 and 10 days, coincident with the appearance and proliferation start of spermatogonia and Sertoli cells. Meiosis accomplishment and spermatid differentiation were paralleled by 2 additional rises, at 24 and 32 days, respectively. The plateau phase of testis growth was coincident with the appearance of maturating spermatids and spermatozoa in the germinal epithelium, and with a decrease in CaM content. Testicular DNA:g wet tissue ratio reached the highest level in 15-day-old rats and gradually decreased up to 35 days, when a constant level was reached. A similar level of Ca2+-CaMBPs was observed in 5- and 20-day-old rat testis. Although all subcellular fractions showed the ability to bind CaM in a Ca2+-dependent manner, CaM was mainly recovered in the nuclear and soluble fractions of adult and immature rat testis. Several Ca2+-CaMBPs with an apparent M(r) of 82, 75, 64, 19, and 14 kD were purified by affinity chromatography from pachytene primary spermatocyte nuclear matrix. Ca2+-CaMBPs showing an M(r) of 120, 78, 72, and 66 kD were also purified from the supernatant obtained after DNA and RNA hydrolysis of meiotic nuclei. Major cytosolic Ca2+-CaMBPs of primary spermatocytes showed an M(r) of 120, 84, 44, and 39 kD. The functions that these Ca2+-CaMBPs might have during the first meiotic prophase is discussed.
Collapse
Affiliation(s)
- R Trejo
- Unidad de Investigación Médica en Enfermedades Oncológicas, Hospitalde Oncologia, D.F., Mexico
| | | |
Collapse
|
7
|
Sánchez-Ferrer A, Bru R, García-Carmona F. Phase separation of biomolecules in polyoxyethylene glycol nonionic detergents. Crit Rev Biochem Mol Biol 1994; 29:275-313. [PMID: 8001397 DOI: 10.3109/10409239409083483] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The advantage of aqueous two-phase systems based on polyoxyethylene detergents over other liquid-liquid two-phase systems lies in their capacity to fractionate membrane proteins simply by heating the solution over a biocompatible range of temperatures (20 to 37 degrees C). This permits the peripheral membrane proteins to be effectively separated from the integral membrane proteins, which remain in the detergent-rich phase due to the interaction of their hydrophobic domains with detergent micelles. Since the first reports of this special characteristic of polyoxyethylene glycol detergents in 1981, numerous reports have consolidated this procedure as a fundamental technique in membrane biochemistry and molecular biology. As examples of their use in these two fields, this review summarizes the studies carried out on the topology, diversity, and anomalous behavior of transmembrane proteins on the distribution of glycosyl-phosphatidylinositol-anchored membrane proteins, and on a mechanism to describe the pH-induced translocation of viruses, bacterial endotoxins, and soluble cytoplasmic proteins related to membrane fusion. In addition, the phase separation capacity of these polyoxyethylene glycol detergents has been used to develop quick fractionation methods with high recoveries, on both a micro- and macroscale, and to speed up or increase the efficiency of bioanalytical assays.
Collapse
Affiliation(s)
- A Sánchez-Ferrer
- Departamento de Bioquímica y Biología Molecular-A, Facultad de Biología, Universidad de Murcia, Spain
| | | | | |
Collapse
|
8
|
Activities of some regulatory enzymes of carbohydrate metabolism in the liver of rats fed a histidine-excess diet. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/0300-9629(93)90334-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Speth M, Schulze HU. The purification of a detergent-soluble glucose-6-phosphatase from rat liver. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 208:643-50. [PMID: 1327763 DOI: 10.1111/j.1432-1033.1992.tb17230.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A highly active and soluble glucose-6-phosphatase has been purified to near homogeneity from rat liver. Successful purification has been initiated by covalent labeling of the enzyme in native rat liver microsomes with pyridoxal 5'-phosphate and NaBH4, followed by solubilization of the microsomes with Triton X-100, chromatography on phenyl-Sepharose, hydroxyapatite, DEAE-Sephacel and a second chromatography step on hydroxyapatite. The final enzyme preparation obtained was approximately 700-fold purified over the activity of starting microsomes. As judged by SDS/PAGE the purified glucose-6-phosphatase is composed of a single protein with a molecular mass of 35 kDa. The present work demonstrates that the purified glucose-6-phosphatase must be arranged in the native microsomal membrane so that it is accessible to pyridoxal 5'-phosphate from the cytoplasmic side.
Collapse
Affiliation(s)
- M Speth
- Biochemisches Institut, Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | |
Collapse
|
10
|
Zakim D, Dannenberg AJ. How does the microsomal membrane regulate UDP-glucuronosyltransferases? Biochem Pharmacol 1992; 43:1385-93. [PMID: 1567462 DOI: 10.1016/0006-2952(92)90192-l] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D Zakim
- Department of Medicine, Cornell University Medical College, New York, NY
| | | |
Collapse
|
11
|
Speth M, Schulze HU. Protease inhibitors but not proteases inhibit the glucose-6-phosphatase of native rat liver microsomes. Biochem Biophys Res Commun 1992; 183:590-7. [PMID: 1312835 DOI: 10.1016/0006-291x(92)90523-n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Controlled proteolytic digestion by trypsin or bacterial proteases limited to the cytosolic side of the native microsomal membrane is not efficient to inhibit glucose-6-phosphate hydrolysis. Modification of the microsomes with deoxycholate prior to protease treatment is prerequisite to allow accessibility of the integral protein and inhibition of enzyme activity. Glucose-6-phosphatase of native microsomes, however, is rapidly inactivated by micromolar concentrations of TPCK as well as TLCK. In deoxycholate-modified microsomes both reagents do not affect glucose-6-phosphate hydrolysis. These results indicate that in the native, intact microsomal membrane glucose-6-phosphatase is not accessible to proteolytic attack from the cytoplasmic surface. The putative inhibitory effect of some trypsin or bacterial protease preparations on glucose-6-phosphatase of native microsomes observed most possibly is a result of contaminating agents as TPCK or TLCK.
Collapse
Affiliation(s)
- M Speth
- Biochemisches Institut am Klinikum Justus-Liebig-Universität, Giessen, FRG
| | | |
Collapse
|
12
|
Jørgensen BM, Agerbo P, Jensen B, Børresen T, Hølmer G. Inhibition of microsomal glucose 6-phosphatase by unsaturated aliphatic aldehydes and ketones. Chem Biol Interact 1992; 81:209-18. [PMID: 1309686 DOI: 10.1016/0009-2797(92)90035-j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Aldehydes and ketones with one double bond conjugated to the carbonyl group inhibited the enzyme glucose 6-phosphatase, which is embedded in the microsomal membrane. The Michaelis constant, Km and the maximal rate of reaction, V, were affected in a way dependent on the inhibitor's chain-length: trans-2-pentenal and 1-penten-3-one increased Km linearly with concentration and had almost no effect on V, whereas trans-2-nonenal caused a large increase in V but only a small and non-linear change in Km. The effect of the short-chain aldehydes on the kinetic parameters increased with chain-length, but pentenone increased Km more than did trans-2-heptenal and conjugated dienals did not act as inhibitors. Therefore, sterical effects apparently are of importance. Washing the microsomes after incubation with hexenal or heptenal did not substantially decrease the inhibition, but with nonenal the inhibition was reduced by washing. Inhibition by the SH-group blocking reagent p-hydroxymercuribenzoate was competitive to inhibition by the alkenals. It is concluded that the alpha-beta unsaturated oxo-compounds inhibit glucose 6-phosphatase by binding covalently to an important mercapto group and that perturbation of the enzyme's membrane environment also plays a part in the inhibition.
Collapse
Affiliation(s)
- B M Jørgensen
- Center for Food Research at DTH, Danish Ministry of Fisheries, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
13
|
Speth M, Schulze HU. Modulation of the activity of hepatic glucose-6-phosphatase by methylthioadenosine sulfoxide. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1068:217-30. [PMID: 1655032 DOI: 10.1016/0005-2736(91)90212-q] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methylthioadenosine sulfoxide (MTAS), an oxidized derivative of the cell toxic metabolite methylthioadenosine has been used in elucidating the relevance of an interrelationship between the catalytic behavior and the conformational state of hepatic glucose-6-phosphatase and in characterizing the transmembrane orientation of the integral unit in the microsomal membrane. The following results were obtained: (1) Glucose 6-phosphate hydrolysis at 37 degrees C is progressively inhibited when native microsomes are treated with MTAS at 37 degrees C. In contrast, glucose 6-phosphate hydrolysis of the same MTAS-treated microsomes assayed at 0 degrees C is not inhibited. (2) Subsequent modification of the MTAS-treated microsomes with Triton X-114 reveals that glucose-6-phosphatase assayed at 37 degrees C as well as at 0 degrees C is inhibited. (3) Although excess reagent is separated by centrifugation and the MTAS-treated microsomes diluted with buffer before being modified with Triton the temperature-dependent effect of MTAS on microsomal glucose-6-phosphatase is not reversed at all. (4) In native microsomes MTAS is shown to inhibit glucose-6-phosphatase noncompetitively. The subsequent Triton-modification of the MTAS-treated microsomes, however, generates an uncompetitive type of inhibition. (5) Preincubation of native microsomes with MTAS completely prevents the inhibitory effect of 4,4'-diisothiocyanostilbene 2,2'-disulfonate (DIDS) as well as 4,4'-diazidostilbene 2,2'-disulfonate (DASS) on glucose-6-phosphatase. (6) Low molecular weight thiols and tocopherol protect the microsomal glucose-6-phosphatase against MTAS-induced inhibition. (7) Glucose-6-phosphatase solubilized and partially purified from rat liver microsomes is also affected by MTAS in demonstrating the same temperature-dependent behavior as the enzyme of MTAS-treated and Triton-modified microsomes. From these results we conclude that MTAS modulates the enzyme catalytic properties of hepatic glucose-6-phosphatase by covalent modification of reactive groups of the integral protein accessible from the cytoplasmic surface of the microsomal membrane. The temperature-dependent kinetic behavior of MTAS-modulated glucose-6-phosphatase is interpreted by the existence of distinct catalytically active enzyme conformation forms. Detergent-induced modification of the adjacent hydrophobic microenvironment additionally generates alterations of the conformational state leading to changes of the kinetic characteristics of the integral enzyme.
Collapse
Affiliation(s)
- M Speth
- Biochemisches Institut am Klinikum der Justus-Liebig-Universität Giessen, F.R.G
| | | |
Collapse
|
14
|
|
15
|
Speth M, Baake N, Schulze HU. Topographical localization and characterization of microsomal glucose-6-phosphatase binding sites accessible to 4,4'-diazidostilbene 2,2'-disulfonic acid. Arch Biochem Biophys 1989; 275:202-14. [PMID: 2554805 DOI: 10.1016/0003-9861(89)90365-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of the photoactivated reagent 4,4'-diazidostilbene 2,2'-disulfonic acid (DASS) on rat liver microsomal glucose-6-phosphatase has been investigated in order to analyze the accessibility and the chemical nature of functional sites of the integral enzyme protein. The following results were obtained. (i) When native rat liver microsomes are irradiated with the photoactive reagent, the activity of glucose-6-phosphatase is progressively inhibited. However, complete reactivation is obtained by modification of the DASS-labeled microsomes with Triton X-114. (ii) Inhibition of glucose-6-phosphatase is also reversed when the DASS-labeled microsomes are treated with p-mercuribenzoate or dithiothreitol. (iii) When native microsomes are labeled with DASS an intensely fluorescent adduct is formed whose emission and excitation maximum corresponds with those obtained when cysteine or 3-mercaptopropionic acid are irradiated in the presence of the photolabile reagent. (iv) The data from fluorescence measurements show that p-mercuribenzoate and dithiothreitol reduce fluorescence labeling of the microsomes whereas Triton modification of the DASS-labeled membranes does not affect the DASS-induced fluorescence. (v) Glucose 6-phosphate hydrolysis of the partially purified glucose-6-phosphatase is also inhibited as observed with native microsomes. The DASS-induced inhibition is reversed and prevented by p-mercuribenzoate; however, the partially purified enzyme cannot be reactivated by Triton X-114. (vi) When glucose-6-phosphatase is partially purified from the DASS-labeled microsomes this enzyme preparation is fluorescence labeled and inhibited. From these results we conclude that DASS directly reacts with the integral phosphohydrolase mainly by chemical modification of essential sulfhydryl groups of the enzyme protein accessible from the cytoplasmic surface of the native microsomal membrane. The Triton-induced reactivation of the glucose-6-phosphatase of DASS-labeled microsomes is explained in terms of conformational changes of the integral protein elicited during modification of the surrounding membrane by detergent.
Collapse
Affiliation(s)
- M Speth
- Biochemisches Institut der Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | | | |
Collapse
|
16
|
Alegre M, Ciudad CJ, Fillat C, Guinovart JJ. Determination of glucose-6-phosphatase activity using the glucose dehydrogenase-coupled reaction. Anal Biochem 1988; 173:185-9. [PMID: 2847588 DOI: 10.1016/0003-2697(88)90176-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We present a method to determine glucose 6-phosphate activity. This assay measures the rate of glucose released in the glucose-6-phosphatase reaction. The glucose is oxidized to beta-D-gluconolactone by glucose dehydrogenase in a coupled reaction that uses NAD(P)+. The determination is rapid, reproducible, and does not require withdrawal, precipitation, centrifugation, or neutralization steps. This method provides a simple resolution to the problem of the nonspecific appearance of Pi, which is especially important in studies of regulation of glucose-6-phosphatase performed in the presence of ATP.
Collapse
Affiliation(s)
- M Alegre
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
17
|
Speth M, Schulze HU. On the nature of the interaction between 4,4'-diisothiocyanostilbene 2,2'-disulfonic acid and microsomal glucose-6-phosphatase. Evidence for the involvement of sulfhydryl groups of the phosphohydrolase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:111-7. [PMID: 2836198 DOI: 10.1111/j.1432-1033.1988.tb14069.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The effect of 4,4'-diisothiocyanostilbene 2,2'-disulfonic acid (DIDS) on microsomal glucose 6-phosphate hydrolysis has been reinvestigated and characterized in order to elucidate the topological and functional properties of the interacting sites of the glucose-6-phosphatase. The studies were performed on microsomal membranes, partially purified and reconstituted glucose-6-phosphatase preparations and show the following. (a) DIDS inhibits activity of the glucose-6-phosphatase of native microsomes as well as the partially purified glucose-6-phosphatase. (b) Inhibition is reversed when the microsomes and the partially purified phosphohydrolase, incorporated into asolectin liposomes, are modified with Triton X-114. (c) Treatment of native microsomes with DIDS and the following purification of glucose-6-phosphatase from these labeled membranes leads to an enzyme preparation which is labeled and inhibited by DIDS. (d) Preincubation of native microsomes or partially purified glucose-6-phosphatase with a 3000-fold excess of glucose 6-phosphate cannot prevent the DIDS-induced inhibition. (e) Inhibition of glucose-6-phosphatase by DIDS is completely prevented when reactive sulfhydryl groups of the phosphohydrolase are blocked by p-mecuribenzoate. (f) Reactivation of enzyme activity is obtained when DIDS-labeled microsomes are incubated with 2-mercaptoethanol or dithiothreitol. Therefore, we conclude that inhibition of microsomal glucose 6-phosphate hydrolysis by DIDS cannot result from binding of this agent to a putative glucose-6-phosphate-carrier protein. Our results rather suggest that inhibition is caused by chemical modification of sulfhydryl groups of the integral phosphohydrolase accessible to DIDS attack itself. An easy interpretation of these results can be obtained on the basis of a modified conformational model representing the glucose-6-phosphatase as an integral channel-protein located within the hydrophobic interior of the microsomal membrane [Schulze et al. (1986) J. Biol. Chem. 261, 16,571-16,578].
Collapse
Affiliation(s)
- M Speth
- Biochemisches Institut der Justus-Liebig-Universität Giessen, Federal Republic of Germany
| | | |
Collapse
|
18
|
Burchell A, Hume R, Burchell B. A new microtechnique for the analysis of the human hepatic microsomal glucose-6-phosphatase system. Clin Chim Acta 1988; 173:183-91. [PMID: 2837351 DOI: 10.1016/0009-8981(88)90256-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A microtechnique has been developed which enables a complete kinetic analysis of the human hepatic microsomal glucose-6-phosphatase system to be carried out in microsomes isolated from very small liver samples. Complete or partial deficiencies of any of the proteins of the glucose-6-phosphatase system resulting in Type 1a, 1b, 1c or 1d glycogen storage disease can be therefore be diagnosed using hepatic needle biopsy samples, whereas previous methods of diagnosis needed large wedge biopsy samples requiring laparotomy.
Collapse
Affiliation(s)
- A Burchell
- Department of Medicine, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK
| | | | | |
Collapse
|
19
|
Dannenberg A, Zakim D. Effects of prochlorperazine on the function of integral membrane proteins. Biochem Pharmacol 1988; 37:1259-62. [PMID: 2833274 DOI: 10.1016/0006-2952(88)90779-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have studied the effects of prochlorperazine on the activities of UDP-glucuronosyltransferase and glucose-6-phosphatase (glucose-6-P'ase) in rat liver microsomes. The activity of UDP-glucuronosyltransferase was increased in a graded fashion by addition of prochlorperazine. Maximal stimulation occurred at 1 mg prochlorperazine to 2 mg microsomal protein, which resulted in a 6-fold increase in activity. However, with smaller concentrations of drug, there was a time-dependent increase in the activity of UDP-glucuronosyltransferase. Sensitivity of UDP-glucuronosyltransferase to activation by UDP-N-acetylglucosamine was lost after treatment of microsomes with prochlorperazine. These results indicate that prochlorperazine causes a profound reorganization of the interactions between lipids and enzyme since the activity and allosteric properties of UDP-glucuronosyltransferase are known to depend on interactions with lipids in a gel phase. Glucose-6-P'ase also was activated in a graded fashion by prochlorperazine; 1 mg of drug/2 mg microsomal protein resulted in a 60% increase in activity. The temperature-dependent instability of glucose-6-P'ase was increased by treatment of microsomes with prochlorperazine and could be prevented only partially by substrate. We conclude that prochlorperazine disrupts the structural organization between lipids and proteins in microsomal membranes, altering thereby the activity and regulation of at least two different integral membrane proteins.
Collapse
Affiliation(s)
- A Dannenberg
- Department of Medicine, Cornell University Medical College, New York, NY 10021
| | | |
Collapse
|
20
|
Evidence for changes in the conformational status of rat liver microsomal glucose-6-phosphate:phosphohydrolase during detergent-dependent membrane modification. Effect of p-mercuribenzoate and organomercurial agarose gel on glucose-6-phosphatase of native and detergent-modified microsomes. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(18)66605-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Speth M, Schulze HU. Is thermostability of glucose-6-phosphatase indeed dependent on a stabilizing protein? FEBS Lett 1986; 202:32-6. [PMID: 3013678 DOI: 10.1016/0014-5793(86)80643-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Partial purification of glucose-6-phosphatase from rat liver microsomes by solubilization of the membranes with the non-ionic detergent Triton X-114 at pH 6.5 and the removal of inactivating detergent by hydrophobic chromatography results in a thermostable enzyme protein which is not dependent on stabilizing phospholipids or proteins. The readdition of low amounts of detergent immediately causes a conversion into a thermo-unstable phosphohydrolase protein. Thus these findings present evidence that heat instability of partially purified glucose-6-phosphatase derives from traces of inactivating detergent changing the structural properties of the phosphohydrolase rather than from the absence of the postulated specific stabilizing protein.
Collapse
|
22
|
Vanstapel F, Pua K, Blanckaert N. Assay of mannose-6-phosphatase in untreated and detergent-disrupted rat-liver microsomes for assessment of integrity of microsomal preparations. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 156:73-7. [PMID: 3007146 DOI: 10.1111/j.1432-1033.1986.tb09550.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An accurate, precise, and convenient procedure was developed for measurement of the latency of the low-Km mannose-6-phosphatase activity for the purpose of assessment of the membrane permeability barrier in microsomes. This approach is based on previous work of Arion et al. [J. Biol. Chem. (1976) 251, 4901-4907] and consists of measurement of mannose-6-phosphatase activity in the untreated microsomal fraction and in the corresponding microsomes that are fully disrupted in order to eliminate the membrane permeability barrier. Complete disruption of rat liver microsomes was achieved by incubation for 60 min at 0 degree C in the presence of 4 mM zwitterionic detergent 3-[(3-cholamido-propyl)dimethyl-ammonio]-2-hydroxy-1-propane sulphonate (Chapso). That the microsomal membrane permeability barrier was eliminated under those conditions was suggested by the fact that the enzyme activation (up to 50-fold) produced by this pretreatment was at least as large as the effect of any other previously reported disruptive procedure. Disruption of the microsomes by Chapso or by ultrasonication markedly enhanced the thermolability of the mannose-6-phosphatase activity. In addition, exposure of the microsomes to high concentrations of Chapso produced enzyme inactivation that could be partially reversed by dilution of the detergent prior to assaying the enzymic activity. Investigation of these enzyme inactivation phenomena under various incubation conditions for disruption of the microsomes by Chapso and for subsequent assay of mannose-6-phosphatase activity in the presence of Chapso enabled us to define conditions under which instability of the enzyme was undetectable. Using these optimized procedures for disruption of microsomes and assay of hexose-6-P phosphohydrolase, we found that the low-Km mannose-6-phosphatase activity of untreated rat liver microsomes consistently was less than 5% of the total enzyme activity in the fully disrupted microsomes. Accurate and precise assay of the structural latency of mannose-6-phosphatase in membrane preparations must be performed under well-controlled conditions, with special attention to the marked thermolability of the enzyme in the presence of detergent, and is a prerequisite for using this approach for the purpose of assessing intactness of microsomal preparations.
Collapse
|