1
|
Rondelli V, Koutsioubas A, Pršić J, Deboever E, Crowet JM, Lins L, Deleu M. Sitosterol and glucosylceramide cooperative transversal and lateral uneven distribution in plant membranes. Sci Rep 2021; 11:21618. [PMID: 34732753 PMCID: PMC8566578 DOI: 10.1038/s41598-021-00696-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
The properties of biomembranes depend on the presence, local structure and relative distribution assumed by the thousands of components it is made of. As for animal cells, plant membranes have been demonstrated to be organized in subdomains with different persistence lengths and times. In plant cells, sitosterol has been demonstrated to confer to phospholipid membranes a more ordered structure while among lipids, glycosphingolipids are claimed to form rafts where they tightly pack with sterols. Glucosylceramides are glycosphingolipids involved in plant signalling and are essential for viability of cells and whole plant. The glucosylceramide-sitosterol structural coupling within PLPC membranes is here investigated by Langmuir films, in silico simulations and neutron reflectometry, unveiling that a strong direct interaction between the two molecules exists and governs their lateral and transversal distribution within membrane leaflets. The understanding of the driving forces governing specific molecules clustering and segregation in subdomains, such as glucosylceramide and sitosterol, have an impact on the mechanical properties of biomembranes and could reflect in the other membrane molecules partitioning and activity.
Collapse
Affiliation(s)
- V Rondelli
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milano, Italy.
| | - A Koutsioubas
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Garching, Germany.
| | - J Pršić
- Microbial Processes and Interactions Laboratory (MiPI), TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - E Deboever
- Laboratoire de Biophysique Moléculaire aux Interfaces, Structure Fédérative de Recherche Condorcet, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Laboratory of Natural Molecules Chemistry, Gembloux Agro-Bio Tech, University of Liège, 2, Passage des Déportés, 5030, Gembloux, Belgium.,FytoFend S.A., rue Georges Legrand, 6, 5032, Isnes, Belgium
| | - J M Crowet
- Université de Reims Champagne-Ardenne, UFR Sciences Exactes et Naturelles, Reims, France
| | - L Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, Structure Fédérative de Recherche Condorcet, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - M Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Structure Fédérative de Recherche Condorcet, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.
| |
Collapse
|
2
|
Théatre A, Cano-Prieto C, Bartolini M, Laurin Y, Deleu M, Niehren J, Fida T, Gerbinet S, Alanjary M, Medema MH, Léonard A, Lins L, Arabolaza A, Gramajo H, Gross H, Jacques P. The Surfactin-Like Lipopeptides From Bacillus spp.: Natural Biodiversity and Synthetic Biology for a Broader Application Range. Front Bioeng Biotechnol 2021; 9:623701. [PMID: 33738277 PMCID: PMC7960918 DOI: 10.3389/fbioe.2021.623701] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/02/2021] [Indexed: 11/21/2022] Open
Abstract
Surfactin is a lipoheptapeptide produced by several Bacillus species and identified for the first time in 1969. At first, the biosynthesis of this remarkable biosurfactant was described in this review. The peptide moiety of the surfactin is synthesized using huge multienzymatic proteins called NonRibosomal Peptide Synthetases. This mechanism is responsible for the peptide biodiversity of the members of the surfactin family. In addition, on the fatty acid side, fifteen different isoforms (from C12 to C17) can be incorporated so increasing the number of the surfactin-like biomolecules. The review also highlights the last development in metabolic modeling and engineering and in synthetic biology to direct surfactin biosynthesis but also to generate novel derivatives. This large set of different biomolecules leads to a broad spectrum of physico-chemical properties and biological activities. The last parts of the review summarized the numerous studies related to the production processes optimization as well as the approaches developed to increase the surfactin productivity of Bacillus cells taking into account the different steps of its biosynthesis from gene transcription to surfactin degradation in the culture medium.
Collapse
Affiliation(s)
- Ariane Théatre
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, Gembloux, Belgium
| | - Carolina Cano-Prieto
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Marco Bartolini
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Yoann Laurin
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium.,Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Joachim Niehren
- Inria Lille, and BioComputing Team of CRISTAL Lab (CNRS UMR 9189), Lille, France
| | - Tarik Fida
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Saïcha Gerbinet
- Chemical Engineering, Products, Environment, and Processes, University of Liège, Liège, Belgium
| | - Mohammad Alanjary
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Angélique Léonard
- Chemical Engineering, Products, Environment, and Processes, University of Liège, Liège, Belgium
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Ana Arabolaza
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo Gramajo
- Laboratory of Physiology and Genetics of Actinomycetes, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias, Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Harald Gross
- Department of Pharmaceutical Biology, Pharmaceutical Institute, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Philippe Jacques
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, Joint Research Unit BioEcoAgro, UMRt 1158, Gembloux Agro-Bio Tech, University of Liège, Avenue de la Faculté, Gembloux, Belgium
| |
Collapse
|
3
|
Estelle D, Laurence L, Marc O, Caroline DC, Magali D, Marie-Laure F. Linolenic fatty acid hydroperoxide acts as biocide on plant pathogenic bacteria: Biophysical investigation of the mode of action. Bioorg Chem 2020; 100:103877. [DOI: 10.1016/j.bioorg.2020.103877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022]
|
4
|
Furlan AL, Laurin Y, Botcazon C, Rodríguez-Moraga N, Rippa S, Deleu M, Lins L, Sarazin C, Buchoux S. Contributions and Limitations of Biophysical Approaches to Study of the Interactions between Amphiphilic Molecules and the Plant Plasma Membrane. PLANTS 2020; 9:plants9050648. [PMID: 32443858 PMCID: PMC7285231 DOI: 10.3390/plants9050648] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/07/2020] [Accepted: 05/15/2020] [Indexed: 12/20/2022]
Abstract
Some amphiphilic molecules are able to interact with the lipid matrix of plant plasma membranes and trigger the immune response in plants. This original mode of perception is not yet fully understood and biophysical approaches could help to obtain molecular insights. In this review, we focus on such membrane-interacting molecules, and present biophysically grounded methods that are used and are particularly interesting in the investigation of this mode of perception. Rather than going into overly technical details, the aim of this review was to provide to readers with a plant biochemistry background a good overview of how biophysics can help to study molecular interactions between bioactive amphiphilic molecules and plant lipid membranes. In particular, we present the biomimetic membrane models typically used, solid-state nuclear magnetic resonance, molecular modeling, and fluorescence approaches, because they are especially suitable for this field of research. For each technique, we provide a brief description, a few case studies, and the inherent limitations, so non-specialists can gain a good grasp on how they could extend their toolbox and/or could apply new techniques to study amphiphilic bioactive compound and lipid interactions.
Collapse
Affiliation(s)
- Aurélien L. Furlan
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Yoann Laurin
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Camille Botcazon
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Technologie de Compiègne, 60200 Compiègne, France;
| | - Nely Rodríguez-Moraga
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Sonia Rippa
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Technologie de Compiègne, 60200 Compiègne, France;
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Laurence Lins
- Laboratoire de Biophysique Moléculaire aux Interfaces, Gembloux Agro-Bio Tech, TERRA Research Center, Université de Liège, B5030 Gembloux, Belgium; (A.L.F.); (Y.L.); (M.D.); (L.L.)
| | - Catherine Sarazin
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
| | - Sébastien Buchoux
- Unité de Génie Enzymatique et Cellulaire, UMR 7025 CNRS/UPJV/UTC, Université de Picardie Jules Verne, 80039 Amiens, France; (C.B.); (N.R.-M.); (C.S.)
- Correspondence: ; Tel.: +33-(0)3-2282-7473
| |
Collapse
|
5
|
Verstraeten SL, Deleu M, Janikowska-Sagan M, Claereboudt EJS, Lins L, Tyteca D, Mingeot-Leclercq MP. The activity of the saponin ginsenoside Rh2 is enhanced by the interaction with membrane sphingomyelin but depressed by cholesterol. Sci Rep 2019; 9:7285. [PMID: 31086211 PMCID: PMC6513819 DOI: 10.1038/s41598-019-43674-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/12/2019] [Indexed: 01/12/2023] Open
Abstract
The membrane activity of some saponins, such as digitonin or alpha-hederin, is usually attributed to their interaction with membrane cholesterol (Chol). This contrasts with our recent publication showing that Chol, contrary to sphingomyelin (SM), can delay the cytotoxicity of the saponin ginsenoside Rh2, challenging the usual view that most saponins mediate their membrane effects through interaction with Chol. The aim of the present study was to elucidate the respective importance of Chol and SM as compared to phosphatidylcholine (PC) species in the membrane-related effects of Rh2. On simple lipid monolayers, Rh2 interacted more favorably with eggSM and DOPC than with Chol and eggPC. Using Large Unilamellar Vesicles (LUVs) of binary or ternary lipid compositions, we showed that Rh2 increased vesicle size, decreased membrane fluidity and induced membrane permeability with the following preference: eggSM:eggPC > eggSM:eggPC:Chol > eggPC:Chol. On Giant Unilamellar Vesicles (GUVs), we evidenced that Rh2 generated positive curvatures in eggSM-containing GUVs and small buds followed by intra-luminal vesicles in eggSM-free GUVs. Altogether, our data indicate that eggSM promotes and accelerates membrane-related effects induced by Rh2 whereas Chol slows down and depresses these effects. This study reconsiders the theory that Chol is the only responsible for the activity of saponins.
Collapse
|
6
|
Claereboudt EJS, Eeckhaut I, Lins L, Deleu M. How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers. Sci Rep 2018; 8:10845. [PMID: 30022094 PMCID: PMC6052070 DOI: 10.1038/s41598-018-29223-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Sea cucumbers produce saponins as a chemical defense mechanism, however their cells can tolerate the cytotoxic nature of these chemicals. To elucidate the molecular mechanisms behind this tolerance a suite of complementary biophysical tools was used, firstly using liposomes for in vitro techniques then using in silico approaches for a molecular-level insight. The holothuroid saponin Frondoside A, caused significantly less permeabilization in liposomes containing a Δ7 holothuroid sterol than those containing cholesterol and resulted in endothermic interactions versus exothermic interactions with cholesterol containing liposomes. Lipid phases simulations revealed that Frondoside A has an agglomerating effect on cholesterol domains, however, induced small irregular Δ7 sterol clusters. Our results suggest that the structural peculiarities of holothuroid sterols provide sea cucumbers with a mechanism to mitigate the sterol-agglomerating effect of saponins, and therefore to protect their cells from the cytotoxicity of the saponins they produce.
Collapse
Affiliation(s)
- Emily J S Claereboudt
- Biology of marine organisms and biomimetics, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
- Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, B-5030, Gembloux, Belgium
| | - Igor Eeckhaut
- Biology of marine organisms and biomimetics, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
| | - Laurence Lins
- Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, B-5030, Gembloux, Belgium
| | - Magali Deleu
- Laboratory of molecular biophysics of interfaces, Gembloux Agro-Bio Tech, University of Liege, B-5030, Gembloux, Belgium.
| |
Collapse
|
7
|
Chan KH, Lee WH, Zhuo S, Ni M. Harnessing supramolecular peptide nanotechnology in biomedical applications. Int J Nanomedicine 2017; 12:1171-1182. [PMID: 28223805 PMCID: PMC5310635 DOI: 10.2147/ijn.s126154] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The harnessing of peptides in biomedical applications is a recent hot topic. This arises mainly from the general biocompatibility of peptides, as well as from the ease of tunability of peptide structure to engineer desired properties. The ease of progression from laboratory testing to clinical trials is evident from the plethora of examples available. In this review, we compare and contrast how three distinct self-assembled peptide nanostructures possess different functions. We have 1) nanofibrils in biomaterials that can interact with cells, 2) nanoparticles that can traverse the bloodstream to deliver its payload and also be bioimaged, and 3) nanotubes that can serve as cross-membrane conduits and as a template for nanowire formation. Through this review, we aim to illustrate how various peptides, in their various self-assembled nanostructures, possess great promise in a wide range of biomedical applications and what more can be expected.
Collapse
Affiliation(s)
| | - Wei Hao Lee
- Department of Chemistry, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Shuangmu Zhuo
- Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
| | - Ming Ni
- Fujian Provincial Key Laboratory for Photonics Technology, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, People’s Republic of China
| |
Collapse
|
8
|
Sasidharan S, Hazam PK, Ramakrishnan V. Symmetry-Directed Self-Organization in Peptide Nanoassemblies through Aromatic π-π Interactions. J Phys Chem B 2017; 121:404-411. [PMID: 27935713 DOI: 10.1021/acs.jpcb.6b09474] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Almost all biological systems are assemblies of one or more biomolecules from nano- to macrodimensions. Unlike inorganic molecules, peptide systems attune with the conceptual framework of aggregation models when forming nanoassemblies. Three significant recent theoretical models have indicated that nucleation, end-to-end association, and geometry of growth are determined primarily by the size and electrostatics of the individual basic building blocks. In this study, we tested six model systems, differentially modulating the prominence of three design variables, namely, aromatic π-π interactions, local electrostatics, and overall symmetry of the basic building unit. Our results indicate that the crucial design elements in a peptide-based nanoassembly are (a) a stable extended π-π interaction network, (b) size, and (c) overall symmetry of the basic building blocks. The six model systems represent all of the design variables in the best manner possible, considering the complexity of a biomolecule. The results provide important directives in deciding the morphology and crystallinity of peptide nanoassemblies.
Collapse
Affiliation(s)
- Sajitha Sasidharan
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, India
| | - Prakash Kishore Hazam
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, India
| | - Vibin Ramakrishnan
- Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati , Guwahati 781039, India
| |
Collapse
|
9
|
Nasir MN, Crowet JM, Lins L, Obounou Akong F, Haudrechy A, Bouquillon S, Deleu M. Interactions of sugar-based bolaamphiphiles with biomimetic systems of plasma membranes. Biochimie 2016; 130:23-32. [DOI: 10.1016/j.biochi.2016.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/01/2016] [Indexed: 12/20/2022]
|
10
|
Deleu M, Crowet JM, Nasir MN, Lins L. Complementary biophysical tools to investigate lipid specificity in the interaction between bioactive molecules and the plasma membrane: A review. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:3171-3190. [DOI: 10.1016/j.bbamem.2014.08.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/05/2014] [Accepted: 08/21/2014] [Indexed: 02/08/2023]
|
11
|
Effects of surfactin on membrane models displaying lipid phase separation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:801-15. [DOI: 10.1016/j.bbamem.2012.11.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/19/2012] [Accepted: 11/05/2012] [Indexed: 01/02/2023]
|
12
|
Crowet JM, Lins L, Deshayes S, Divita G, Morris M, Brasseur R, Thomas A. Modeling of non-covalent complexes of the cell-penetrating peptide CADY and its siRNA cargo. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:499-509. [DOI: 10.1016/j.bbamem.2012.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/09/2012] [Accepted: 09/07/2012] [Indexed: 01/06/2023]
|
13
|
Nsimba Zakanda F, Lins L, Nott K, Paquot M, Mvumbi Lelo G, Deleu M. Interaction of hexadecylbetainate chloride with biological relevant lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:3524-33. [PMID: 22263671 DOI: 10.1021/la2040328] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The present work investigates the interaction of hexadecylbetainate chloride (C(16)BC), a glycine betaine-based ester with palmitoyl-oleoyl-phosphatidylcholine (POPC), sphingomyelin (SM), and cholesterol (CHOL), three biological relevant lipids present in the outer leaflet of the mammalian plasma membrane. The binding affinity and the mixing behavior between the lipids and C(16)BC are discussed based on experimental (isothermal titration calorimetry (ITC) and Langmuir film balance) and molecular modeling studies. The results show that the interaction between C(16)BC and each lipid is thermodynamically favorable and does not affect the integrity of the lipid vesicles. The primary adsorption of C(16)BC into the lipid film is mainly governed by a hydrophobic effect. Once C(16)BC is inserted in the lipid film, the polar component of the interaction energy between C(16)BC and the lipid becomes predominant. Presence of CHOL increases the affinity of C(16)BC for membrane. This result can be explained by the optimal matching between C(16)BC and CHOL within the film rather by a change of membrane fluidity due to the presence of CHOL. The interaction between C(16)BC and SM is also favorable and gives rise to highly stable monolayers probably due to hydrogen bonds between their hydrophilic groups. The interaction of C(16)BC with POPC is less favorable but does not destabilize the mixed monolayer from a thermodynamic point of view. Interestingly, for all the monolayers investigated, the exclusion surface pressures are above the presumed lateral pressure of the plasma membranes suggesting that C(16)BC would be able to penetrate into mammalian plasma membranes in vivo. These results may serve as a useful basis in understanding the interaction of C(16)BC with real membranes.
Collapse
Affiliation(s)
- F Nsimba Zakanda
- Unité de Chimie Biologique Industrielle, Gembloux Agro-Bio Tech-University of Liege, Passage des Déportés 2, 5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
14
|
Schuster TB, de Bruyn Ouboter D, Bruns N, Meier W. Exploiting dimerization of purely peptidic amphiphiles to form vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:2158-2162. [PMID: 21626692 DOI: 10.1002/smll.201100701] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Indexed: 05/30/2023]
Affiliation(s)
- Thomas B Schuster
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
15
|
Proposed Mechanism for H(II) Phase Induction by Gramicidin in Model Membranes and Its Relation to Channel Formation. Biophys J 2010; 53:111-7. [PMID: 19431714 DOI: 10.1016/s0006-3495(88)83072-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A model is proposed for the molecular mechanism of H(II) phase induction by gramicidin in model membranes. The model describes the sequence of events that occurs upon hydration of a mixed lipid/gramicidin film, relating them to gramicidin channel formation and to relevant literature on gramicidin and lipid structure.
Collapse
|
16
|
|
17
|
Brasseur R, Braun N, El Kirat K, Deleu M, Mingeot-Leclercq MP, Dufrêne YF. The biologically important surfactin lipopeptide induces nanoripples in supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:9769-72. [PMID: 17696376 DOI: 10.1021/la7014868] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Under specific conditions, lipid membranes form ripple phases with intriguing nanoscale undulations. Here, we show using in situ atomic force microscopy (AFM) that the biologically important surfactin lipopeptide induces nanoripples of 30 nm periodicity in dipalmitoyl phosphatidylcholine (DPPC) bilayers at 25 degrees (i.e. well below the pretransition temperature of DPPC). Whereas most undulations formed the classical straight orientation with characteristic angle changes of 120 degrees , some of them also displayed unusual circular orientations. Strikingly, ripple structures were formed at 15% surfactin but were rarely or never observed at 5 and 30% surfactin, emphasizing the important role played by the surfactin concentration. Theoretical simulations corroborated the AFM data by revealing the formation of stable surfactin/lipid assemblies with positive curvature.
Collapse
Affiliation(s)
- Robert Brasseur
- Centre de Biophysique Moléculaire Numérique, Faculté Universitaire des Sciences Agronomiques de Gembloux, Passage des Déportés 2, B-5030 Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Kelkar DA, Chattopadhyay A. Modulation of gramicidin channel conformation and organization by hydrophobic mismatch in saturated phosphatidylcholine bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1103-13. [PMID: 17321493 DOI: 10.1016/j.bbamem.2007.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 01/18/2007] [Accepted: 01/22/2007] [Indexed: 11/25/2022]
Abstract
The matching of hydrophobic lengths of integral membrane proteins and the surrounding lipid bilayer is an important factor that influences both structure and function of integral membrane proteins. The ion channel gramicidin is known to be uniquely sensitive to membrane properties such as bilayer thickness and membrane mechanical properties. The functionally important carboxy terminal tryptophan residues of gramicidin display conformation-dependent fluorescence which can be used to monitor gramicidin conformations in membranes [S.S. Rawat, D.A. Kelkar, A. Chattopadhyay, Monitoring gramicidin conformations in membranes: a fluorescence approach, Biophys. J. 87 (2004) 831-843]. We have examined the effect of hydrophobic mismatch on the conformation and organization of gramicidin in saturated phosphatidylcholine bilayers of varying thickness utilizing the intrinsic conformation-dependent tryptophan fluorescence. Our results utilizing steady state and time-resolved fluorescence spectroscopic approaches, in combination with circular dichroism spectroscopy, show that gramicidin remains predominantly in the channel conformation and gramicidin tryptophans are at the membrane interfacial region over a range of mismatch conditions. Interestingly, gramicidin conformation shifts toward non-channel conformations in extremely thick gel phase membranes although it is not excluded from the membrane. In addition, experiments utilizing self quenching of tryptophan fluorescence indicate peptide aggregation in thicker gel phase membranes.
Collapse
Affiliation(s)
- Devaki A Kelkar
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
19
|
|
20
|
Mingeot-Leclercq MP, Gallet X, Flore C, Van Bambeke F, Peuvot J, Brasseur R. Experimental and conformational analyses of interactions between butenafine and lipids. Antimicrob Agents Chemother 2001; 45:3347-54. [PMID: 11709307 PMCID: PMC90836 DOI: 10.1128/aac.45.12.3347-3354.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Butenafine (N-4-tert-butylbenzyl-N-methyl-1-naphtalenemethylamine hydrochloride) is an antifungal agent of the benzylamine class that has excellent therapeutic efficacy and a remarkably long duration of action when applied topically to treat various mycoses. Given the lipophilic nature of the molecule, efficacy may be related to an interaction with cell membrane phospholipids and permeabilization of the fungal cell wall. Similarly, high lipophilicity could account for the long duration of action, since fixation to lipids in cutaneous tissues might allow them to act as local depots for slow release of the drug. We have therefore used computer-assisted conformational analysis to investigate the interaction of butenafine with lipids and extended these observations with experimental studies in vitro using liposomes. Conformational analysis of mixed monolayers of phospholipids with the neutral and protonated forms of butenafine highlighted a possible interaction with both the hydrophilic and hydrophobic domains of membrane phospholipids. Studies using liposomes demonstrated that butenafine increases membrane fluidity [assessed by fluorescence polarization of 1-(4-trimethylammonium-phenyl)-6-phenyl-1,3,5-hexatriene and 1,6-diphenylhexatriene] and membrane permeability (studied by release of calcein from liposomes). The results show, therefore, that butenafine readily interacts with lipids and is incorporated into membrane phospholipids. These findings may help explain the excellent antifungal efficacy and long duration of action of this drug when it is used as a topical antifungal agent in humans.
Collapse
Affiliation(s)
- M P Mingeot-Leclercq
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Deleu M, Nott K, Brasseur R, Jacques P, Thonart P, Dufrêne YF. Imaging mixed lipid monolayers by dynamic atomic force microscopy. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1513:55-62. [PMID: 11427194 DOI: 10.1016/s0005-2736(01)00337-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Phase imaging with tapping mode atomic force microscopy (AFM) and force modulation microscopy were used to probe the mechanical properties of phase-separated lipid monolayers made of a mixture (0.25:0.75) of the surface-active lipopeptide surfactin and of dipalmitoylphosphatidylcholine (DPPC). The pi-A isotherms and the result of a molecular modeling study revealed a loose, 2-D liquid-like organization for the surfactin molecules and a closely packed, 2-D solid-like organization for DPPC molecules. This difference in molecular organization was responsible for a significant contrast in height, tapping mode phase and force modulation amplitude images. Phase imaging at light tapping, i.e., with a ratio of the set-point tapping amplitude with respect to the free amplitude A(sp)/A(0) approximately 0.9, showed larger phase shifts on the solid-like DPPC domains attributed to larger Young's modulus. However, contrast inversion was observed for A(sp)/A(0)<0.7, suggesting that at moderate and hard tapping the image contrast was dominated by the probe-sample contact area. Surprisingly, force modulation amplitude images showed larger stiffness for the liquid-like surfactin domains, suggesting that the contrast was dominated by contact area effects rather than by Young's modulus. These data emphasize the complex nature of the contrast mechanisms of dynamic AFM images recorded on mixed lipid monolayers.
Collapse
Affiliation(s)
- M Deleu
- Unité de Chimie Biologique Industrielle, Faculté Universitaire des Sciences Agronomiques de Gembloux, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Whiles JA, Brasseur R, Glover KJ, Melacini G, Komives EA, Vold RR. Orientation and effects of mastoparan X on phospholipid bicelles. Biophys J 2001; 80:280-93. [PMID: 11159401 PMCID: PMC1301232 DOI: 10.1016/s0006-3495(01)76013-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mastoparan X (MPX: INWKGIAAMAKKLL-NH2) belongs to a family of ionophoric peptides found in wasp venom. Upon binding to the membrane, MPX increases the cell's permeability to cations leading to a disruption in the electrolyte balance and cell lysis. This process is thought to occur either through a membrane-thinning mechanism, where the peptide resides on the membrane surface thereby disrupting lipid packing, or through formation of an oligomeric pore. To address this issue, we have used both high-resolution and solid-state 2H NMR techniques to study the structure and orientation of MPX when associated with bicelles. NOESY and chemical shift analysis showed that in bicelles, MPX formed a well-structured amphipathic alpha-helix. In zwitterionic bicelles, the helical axis was found to rest generally perpendicular to the membrane normal, which could be consistent with the "carpet" mechanism for lytic activity. In anionic bicelles, on the other hand, the helical axis was generally parallel to the membrane normal, which is more consistent with the pore model for lytic activity. In addition, MPX caused significant disruption in lipid packing of the negatively charged phospholipids. Taken together, these results show that MPX associates differently with zwitterionic membranes, where it rests parallel to the surface, compared with negatively charged membranes, where it penetrates longitudinally.
Collapse
Affiliation(s)
- J A Whiles
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
23
|
Maget-Dana R. The monolayer technique: a potent tool for studying the interfacial properties of antimicrobial and membrane-lytic peptides and their interactions with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1462:109-40. [PMID: 10590305 DOI: 10.1016/s0005-2736(99)00203-5] [Citation(s) in RCA: 435] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Erudites of the antiquity already knew the calming effect of oil films on the sea waves. But one had to wait until 1774 to read the first scientific report on oil films from B. Franklin and again 1878 to learn the thermodynamic analysis on adsorption developed by J. Gibbs. Then, in 1891, Agnes Pockels described a technique to manipulate oil films by using barriers. Finally, in 1917, I. Langmuir introduced the experimental and theoretical modern concepts on insoluble monolayers. Since that time, and because it has been found to provide invaluable information at the molecular scale, the monolayer technique has been more and more extensively used, and, during the past decade, an explosive increase in the number of publications has occurred. Over the same period, considerable and ever-increasing interest in the antimicrobial peptides of various plants, bacteria, insects, amphibians and mammals has grown. Because many of these antimicrobial peptides act at the cell membrane level, the monolayer technique is entirely suitable for studying their physicochemical and biological properties. This review describes monolayer experiments performed with some of these antimicrobial peptides, especially gramicidin A, melittin, cardiotoxins and defensin A. After giving a few basic notions of surface chemistry, the surface-active properties of these peptides and their behavior when they are arranged in monomolecular films are reported and discussed in relation to their tridimensional structure and their amphipathic character. The penetration of these antimicrobial peptides into phospholipid monolayer model membranes, as well as their interactions with lipids in mixed films, are also emphasized.
Collapse
Affiliation(s)
- R Maget-Dana
- Centre de Biophysique Moléculaire, rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
24
|
Lins L, Thomas-Soumarmon A, Pillot T, Vandekerchkhove J, Rosseneu M, Brasseur R. Molecular determinants of the interaction between the C-terminal domain of Alzheimer's beta-amyloid peptide and apolipoprotein E alpha-helices. J Neurochem 1999; 73:758-69. [PMID: 10428074 DOI: 10.1046/j.1471-4159.1999.0730758.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a previous work, we predicted and demonstrated that the 29-42-residue fragment of beta-amyloid peptide (Abeta peptide) has in vitro capacities close to those of the tilted fragment of viral fusion proteins. We further demonstrated that apolipoprotein E2 and E3 but not apolipoprotein E4 can decrease the fusogenic activity of Abeta(29-42) via a direct interaction. Therefore, we suggested that this fragment is implicated in the neurotoxicity of Abeta and in the protective effects of apolipoprotein E in Alzheimer's disease. Because structurally related apolipoproteins do not interact with the Abeta C-terminal domain but inhibit viral fusion, we suggested that interactions existing between fusogenic peptides and apolipoproteins are selective and responsible for the inhibition of fusion. In this study, we simulated interactions of all amphipathic helices of apolipoproteins E and A-I with Abeta and simian immunodeficiency virus (SIV) fusogenic fragments by molecular modeling. We further calculated cross-interactions that do not inhibit fusion in vitro. The results suggest that interactions of hydrophobic residues are the major event to inhibit the fusogenic capacities of Abeta(29-42) and SIV peptides. Selectivity of those interactions is due to the steric complementarity between bulky hydrophobic residues in the fusogenic fragments and hydrophobic residues in the apolipoprotein C-terminal amphipathic helices.
Collapse
Affiliation(s)
- L Lins
- INSERM U. 10, Hôpital Bichat-Claude Bernard, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Peuvot J, Schanck A, Deleers M, Brasseur R. Piracetam-induced changes to membrane physical properties. A combined approach by 31P nuclear magnetic resonance and conformational analysis. Biochem Pharmacol 1995; 50:1129-34. [PMID: 7488225 DOI: 10.1016/0006-2952(95)00225-o] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Piracetam, Nootropil (2-oxo-1-pyrrolidine acetamide), is a drug promoting erythrocyte deformability. To establish the mode of action of this compound, we have investigated its influence on the organization of model phospholipid membranes. 31P NMR data show that the drug induces a structural modification in liposomes made of phosphatidylcholine and phosphatidylethanolamine. Our conformational analysis results have allowed the interpretation of the effect of piracetam on these model membranes: the specific interaction between the drug molecules and the phosphate headgroups induces a new organization of the lipids favouring formation of mobile drug-phospholipid complexes that exhibit an isotropic-type signal in the 31P NMR spectra.
Collapse
Affiliation(s)
- J Peuvot
- Département médical UCB s.a. B-1420-Braine-l'Alleud, Belgique
| | | | | | | |
Collapse
|
26
|
Mingeot-Leclercq MP, Brasseur R, Schanck A. Molecular parameters involved in aminoglycoside nephrotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH 1995; 44:263-300. [PMID: 7897692 DOI: 10.1080/15287399509531960] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aminoglycoside antibiotics are hydrophilic molecules consisting of an animated cyclitol associated with amino sugar. They bind in vivo as well as in vitro to negatively charged membranes. Their use as chemotherapeutic agents is unfortunately accompanied by oto- and nephrotoxic reactions, and the purpose of this review is to examine the role of the molecular interactions between aminoglycosides and membranes in the development of nephrotoxicity. 31P Nuclear magnetic resonance (NMR) and fluorescence depolarization have been used to characterize the effect of aminoglycosides on phosphate heads and fatty acyl chains of phospholipids. 15N NMR has been used to obtain interesting information on regioselective interactions of amino groups of antibiotics with phospholipids. The binding of aminoglycosides with negatively charged membranes is associated with impairment of phospholipid catabolism, change in membrane permeability, and membrane aggregation. Biochemical analysis and 1H NMR spectroscopy have brought information on the molecular mechanism involved in the impairment of phospholipid catabolism. Nephrotoxic aminoglycosides could induce sequestration of phosphatidylinositol and therefore reduce the amount of negative charge available for optimal lysosomal phospholipase activity toward phosphatidylcholine included in liposomes that also contain cholesterol and sphingomyelin. Conformational analysis shows that aminoglycosides, which have a high potency to inhibit lysosomal phospholipase activity, adopt an orientation parallel to the lipid/water interface. This orientation of the aminoglycoside molecule at the interface is also critical to explain the marked increase of membrane permeability induced by less nephrotoxic aminoglycosides such as isepamicin and amikacin. This effect is indeed only observed with aminoglycosides oriented perpendicular to this interface, probably related to the creation of a local condition of disorder. The impairment of phospholipid catabolism, which is considered to be an early and significant step in the development of aminoglycoside toxicity, is therefore not related to the change in membrane permeability. However, the role of this latter phenomenon and of membrane aggregation for aminoglycoside nephrotoxicity could be further investigated.
Collapse
Affiliation(s)
- M P Mingeot-Leclercq
- Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, Brussels, Belgium
| | | | | |
Collapse
|
27
|
Callebaut I, Tasso A, Brasseur R, Burny A, Portetelle D, Mornon JP. Common prevalence of alanine and glycine in mobile reactive centre loops of serpins and viral fusion peptides: do prions possess a fusion peptide? J Comput Aided Mol Des 1994; 8:175-91. [PMID: 8064333 DOI: 10.1007/bf00119866] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Serpin reactive centre loops and fusion peptides released by proteolytic cleavage are particularly mobile. Their amino acid compositions reveal a common and unusual abundance of alanine, accompanied by high levels of glycine. These two small residues, which are not simultaneously abundant in stable helices (standard or transmembrane), probably play an important role in mobility. Threonine and valine (also relatively small amino acids) are also abundant in these two kinds of peptides. Moreover, the known 3D structures of an uncleaved serpin reactive centre and a fusion peptide are strikingly similar. Such sequences possess many small residues and are found in several signal peptides and in PrP, a protein associated with spongiform encephalopathies and resembling virus envelope proteins. These properties may be related to the infection mechanisms of these diseases.
Collapse
Affiliation(s)
- I Callebaut
- Département des Macromolécules Biologiques, CNRS URA09, Universités P6 et P7, Paris, France
| | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- J A Killian
- Department of Biochemistry of Membranes, University of Utrecht, Netherlands
| |
Collapse
|
29
|
Epand RM, Cheetham JJ, Epand RF, Yeagle PL, Richardson CD, Rockwell A, Degrado WF. Peptide models for the membrane destabilizing actions of viral fusion proteins. Biopolymers 1992; 32:309-14. [PMID: 1623124 DOI: 10.1002/bip.360320403] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The fusion of enveloped viruses to target membranes is promoted by certain viral fusion proteins. However, many other proteins and peptides stabilize bilayer membranes and inhibit membrane fusion. We have evaluated some characteristics of the interaction of peptides that are models of segments of measles and influenza fusion proteins with membranes. Our results indicate that these models of the fusogenic domains of viral fusion proteins promote conversion of model membrane bilayers to nonbilayer phases. This is opposite to the effects of peptides and proteins that inhibit viral fusion. A peptide model for the fusion segment of the HA protein of influenza increased membrane leakage as well as promoted the formation of nonbilayer phases upon acidification from pH 7-5. We analyze the gross conformational features of the peptides, and speculate on how these conformational features relate to the structures of the intact proteins and to their role in promoting membrane fusion.
Collapse
Affiliation(s)
- R M Epand
- Department of Biochemistry, McMaster University Health Sciences Centre, Hamilton, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Chatelain P, Brasseur R. A conformational analysis study of the interaction of amiodarone and cholesterol with lysophosphatidylcholine. Biochem Pharmacol 1991; 41:1639-47. [PMID: 2043153 DOI: 10.1016/0006-2952(91)90164-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The spatial configuration of amiodarone (in both its protonated and neutral forms) and a hydroxylated analog was studied using conformational analysis in a simulated membrane-water environment. The three compounds and cholesterol were studied as isolated molecules and in interaction with lysophosphatidylcholine. The association of the molecules with lysophosphatidylcholine was further characterized by incorporation in a phosphatidylcholine matrix. Calculation of the mean interaction energy, the surface charge density and the hydrophilic and hydrophobic mean molecular areas showed that the protonated form of amiodarone, and to a lesser extent cholesterol form a stable association with lysophosphatidylcholine. This association was further stabilized when incorporated into a phosphatidylcholine matrix so that the mean interaction energy increased to -96.1 kJ/mol (i.e. 60% higher than the mean lipid-lipid energy of interaction). Lysophosphatidylcholine was shown to possess a cone-shaped structure whilst amiodarone was shown to be in the form of an inverted cone. This association of the two cones forms a stable cylindrical structure.
Collapse
Affiliation(s)
- P Chatelain
- Sanofi-Labaz Research Centre, Brussels, Belgium
| | | |
Collapse
|
31
|
Tournois H, de Kruijff B. Polymorphic phospholipid phase transitions as tools to understand peptide-lipid interactions. Chem Phys Lipids 1991; 57:327-40. [PMID: 1711420 DOI: 10.1016/0009-3084(91)90084-o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of peptides on bilayer----non-bilayer phase transitions can be used as a tool to investigate the molecular aspects of peptide-lipid interactions. In this contribution the action on membranes of the peptide antibiotic gramicidin A and the bee venom component melittin are compared. Although the known structures and locations of these peptides upon membrane binding are very different, their actions on membranes show striking parallels. A general model is proposed that explains the seemingly complex peptide-lipid interactions by making use of simple concepts.
Collapse
Affiliation(s)
- H Tournois
- aATO Agrotechnology, Wageningen, The Netherlands
| | | |
Collapse
|
32
|
Wang J, Pullman A. Interactions and packing of lipids around a helical hydrophobic polypeptide. The system gramicidin A/glycerylmonooleate. Chem Phys Lipids 1991. [DOI: 10.1016/0009-3084(91)90044-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
33
|
Brasseur R, Vandenbranden M, Cornet B, Burny A, Ruysschaert JM. Orientation into the lipid bilayer of an asymmetric amphipathic helical peptide located at the N-terminus of viral fusion proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1029:267-73. [PMID: 2245211 DOI: 10.1016/0005-2736(90)90163-i] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The complete amino-acid sequence of viral fusion proteins has been analyzed by the Eisenberg procedure. The region surrounding the cleavage site contains a highly hydrophilic region immediately followed by a membrane-like region. Since the effective cleavage between these two domains seems required to expose the fusogenic domain (located at the N-terminal sequence of the transmembrane like region) which is assumed to interact with the lipid membrane of the host cell, we have focused our analysis on the conformation and mode of insertion of this membrane-like domain in a lipid monolayer. It was inserted as an alpha-helical structure into a dipalmitoylphosphatidylcholine (DPPC) monolayer and its orientation at the lipid/water interface was determined using a theoretical analysis procedure allowing the assembly of membrane components. For each viral protein sequence these N-terminal helical segments oriented obliquely with respect to the lipid/water interface. This rather unusual orientation is envisaged as a prerequisite to membrane destabilization and fusogenic activity.
Collapse
Affiliation(s)
- R Brasseur
- Laboratory of Macromolecules at Interfaces, Brussels, Belgium
| | | | | | | | | |
Collapse
|
34
|
Mingeot-Leclercq MP, Piret J, Tulkens PM, Brasseur R. Effect of acidic phospholipids on the activity of lysosomal phospholipases and on their inhibition induced by aminoglycoside antibiotics--II. Conformational analysis. Biochem Pharmacol 1990; 40:499-506. [PMID: 2383283 DOI: 10.1016/0006-2952(90)90548-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In a companion paper (Mingeot-Leclercq et al. Biochem Pharmacol 40: 489-497, 1990), we showed that the inhibitory potency of gentamicin on the activity of lysosomal phospholipases, measured towards phosphatidylcholine included in negatively-charged liposomes, is markedly influenced by the nature of the acidic phospholipid used (phosphatidylinositol, phosphatidylserine, phosphatidic acid), whereas the binding of the drug to the three types of liposomes is similar. This result challenged previous conclusions pointing to a key role exerted by drug binding to phospholipid membranes and presumably charge neutralization, for phospholipases inhibition (Carlier et al. Antimicrob Agents Chemother, 23: 440-449, 1983; Mingeot-Leclercq et al., Biochem Pharmacol 37:591-599, 1988). Conformational analysis of mixed monolayers of gentamicin and each of the three acid phospholipids shows that gentamicin systematically adopts an orientation largely parallel to the hydrophobic-hydrophilic interface, but that (i) the energies of interaction are largely different (phosphatidylinositol greater than phosphatidylserine greater than phosphatidic acid), and (ii) the apparent accessibility of the bound drug to water varies in an inverse relation with the energies of interaction. Amikacin, a semisynthetic derivative of kanamycin A with a lower inhibitory potential towards phospholipases than gentamicin in the three types of liposomes used, also showed similar differences in energies of interaction and accessibility to water, but constantly exhibited an orientation perpendicular to the hydrophobic-hydrophilic interface. We conclude that impairment of lysosomal phospholipase activities towards phosphatidylcholine included in negatively-charged membranes by aminoglycoside antibiotics is indeed dependent upon drug binding to the bilayer, but is also modulated by (i) the nature of the acidic phospholipid, which influences the energy of interaction and the accessibility of the drug with respect to the hydrophilic phase, and (ii) the orientation of the drug, which it itself related to its chemical structure. Inasmuch as phospholipases inhibition is related to aminoglycoside nephrotoxicity, these findings may help in better defining the molecular determinants and mechanisms responsible for this adverse effect.
Collapse
Affiliation(s)
- M P Mingeot-Leclercq
- Laboratoire de Chimie Physiologique, Université Catholique de Louvain, Bruxelles, Belgium
| | | | | | | |
Collapse
|
35
|
Mingeot-Leclercq MP, Schanck A, Ronveaux-Dupal MF, Deleers M, Brasseur R, Ruysschaert JM, Laurent G, Tulkens PM. Ultrastructural, physico-chemical and conformational study of the interactions of gentamicin and bis(beta-diethylaminoethylether) hexestrol with negatively-charged phospholipid layers. Biochem Pharmacol 1989; 38:729-41. [PMID: 2539158 DOI: 10.1016/0006-2952(89)90225-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aminoglycoside antibiotics such as gentamicin, which are fully hydrophilic, and cationic amphiphilic drugs such as bis(beta-diethylaminoethylether)hexestrol (DEH), are both known to inhibit lysosomal phospholipases and induce phospholipidosis. This enzymatic inhibition is probably related to the neutralization of the surface negative charges on which the lysosomal phospholipases A1 and A2 are dependent to express fully their activities (Mingeot-Leclerq et al., Biochem Pharmacol 37: 591-599, 1988). Using negatively charged liposomes, we show by 31P NMR spectroscopy that both gentamicin and DEH cause a significant restriction in the phosphate head mobility and, in sonicated vesicles, the appearance of larger bilayer structures. Both DEH and gentamicin increased the apparent size of sonicated negatively charged liposomes (but not of neutral liposomes) as measured by quasi-elastic light scattering spectroscopy. Examination of replicas from freeze-etched samples, however, revealed that gentamicin caused aggregation of liposomes, whereas DEH induced their fusion and the formation of intramembranous roundly shaped structures. Only DEH caused a significant decrease of the fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene, a fluorescent lipid-soluble probe. In addition, DEH, but not gentamicin, interfered with the bilayer to hexagonal phase transition occurring in dioleoyl- and dielaidoylphosphatidylethanolamine liposomes upon warming, and caused the appearance of an isotropic signal suggestive of the formation of inverted micelles. In computer-aided conformational analysis of the molecules at a simulated air-water interface, gentamicin was shown to display a largely-open crescent shape. When surrounded by phosphatidylinositol molecules, it remained as such at the interface which it locally mis-shaped, establishing close contact with the negatively charged phospho groups. In contrast, DEH could be oriented perpendicularly to the interface, with its two cationic groups associated with the phospho groups, and its phenyl- and diethylethandiyl moieties deeply inserted between and interacting with the aliphatic chains. Thus, although both agents cause lysosomal phospholipases inhibition, the differences in their interactions with negatively-charged bilayers is likely to result in a different organization of the phospholipids accumulated in vivo, which could lead to different toxicities.
Collapse
|
36
|
Tournois H, Gieles P, Demel R, de Gier J, de Kruijff B. Interfacial properties of gramicidin and gramicidin-lipid mixtures measured with static and dynamic monolayer techniques. Biophys J 1989; 55:557-69. [PMID: 2467699 PMCID: PMC1330509 DOI: 10.1016/s0006-3495(89)82849-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Gramicidin films at the air/water interface are shown to exhibit a phase transition at 225 A2/molecule which might be caused by either cluster formation, reorientation of molecules, conformational changes or multilayer formation. It is further shown that coupling of a charged group on either NH2- or COOH-terminus or elongation of the peptide by two amino acids, only slightly affects the surface area characteristics whereas modification of the tryptophans or even replacement of a single tryptophan by phenylalanine leads to drastic alterations in the surface-area characteristics and a (partial) loss of the phase transition demonstrating that the tryptophans play an important role in the interfacial behavior of gramicidin. The lack of a solvent history effect on the interfacial behavior indicates a rapid conformational interconversion of the peptide at the air/water interface. Gramicidin in mixtures with dioleoylphosphatidylcholine and lysopalmitoylphosphatidylcholine shows a condensing effect whereas gramicidin shows ideal mixing with dioleoylphosphatidylethanolamine. The condensing effect most likely is related to the aggregational state of the peptides which is different in phosphatidylcholines and phosphatidylethanolamines.
Collapse
Affiliation(s)
- H Tournois
- Centre of Biomembranes and Lipid Enzymology, University of Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Dhathathreyan A, Baumann U, Müller A, Möbius D. Characterization of complex gramicidin monolayers by light reflection and Fourier transform infrared spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 944:265-72. [PMID: 2460137 DOI: 10.1016/0005-2736(88)90440-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The reflectivities of monomolecular films of water-insoluble fatty alcohols and fatty acid methyl esters are measured at the air/water interface. A correlation between chain length and reflectivity of the monofilm is established which agrees with calculated values derived from a theoretical model. The correlation is used to estimate thickness of a monolecular film of gramicidin A. Fourier transform infrared (FTIR) spectroscopy is applied to transferred mixed layers of ion-channel-forming gramicidin A and dioctadecyldimethylammonium bromide in order to evaluate the structure of gramicidin. Transfer conditions for these monofilms are elaborated. Results of the reflection method and FTIR spectroscopy demonstrate that gramicidin exists as double-stranded beta-helix inside the monolayer at a lateral pressure similar to that found in biomembranes.
Collapse
Affiliation(s)
- A Dhathathreyan
- Max-Planck-Institut für Biophysikalische Chemie, Göttingen, F.R.G
| | | | | | | |
Collapse
|
38
|
Killian JA, Urry DW. Conformation of gramicidin in relation to its ability to form bilayers with lysophosphatidylcholine. Biochemistry 1988; 27:7295-301. [PMID: 2462902 DOI: 10.1021/bi00419a018] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The ability of gramicidin to induce bilayer formation in lysophosphatidylcholine (LPC) systems was investigated as a function of the conformation of the peptide. The conformation was varied by using different solvents to cosolubilize gramicidin and lipid. Using circular dichroism (CD), it was found that when codissolved in trifluoroethanol (TFE), after drying and subsequent hydration, gramicidin is mainly present in the single-stranded beta 6.3-helical configuration, whereas when using chloroform/methanol or ethanol as the solvent, it is proposed that the dominant conformation of gramicidin in the membrane is that of the double-stranded antiparallel dimer. Employing 31P NMR, the stoichiometry for bilayer formation was found to be 6 to 7 lipid molecules per gramicidin monomer, when samples were prepared from TFE, whereas a stoichiometry of 4 was found when chloroform/methanol or ethanol was the solvent. Upon heating the latter samples, a conversion was observed in the CD pattern toward that indicative of the beta 6.3-helical configuration. This change was accompanied by an increase in the extent of bilayer formation. Next, it was investigated whether the conformation of gramicidin and its ability to induce bilayer formation were dependent on the lipid acyl chain length. CD measurements of samples prepared from TFE indicated that gramicidin, independent of acyl chain length, was present in the beta 6.3-helical configuration but the intensity of the ellipticities at 218 nm increased with the length of the acyl chain. The extent of bilayer formation in these samples was found to be largely chain length independent.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J A Killian
- Laboratory of Molecular Biophysics, School of Medicine, University of Alabama, Birmingham 35294
| | | |
Collapse
|
39
|
Brasseur R, De Loof H, Ruysschaert JM, Rosseneu M. Conformational analysis of lipid-associating proteins in a lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 943:95-102. [PMID: 3401472 DOI: 10.1016/0005-2736(88)90350-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Two major types of helical structures have been identified in lipid-associating proteins, being either amphipathic or transmembrane domains. A conformational analysis was carried out to characterize some of the properties of these helices. These calculations were performed both on isolated helices and in a lipid environment. According to the results of this analysis, the orientation of the line joining the hydrophobic and hydrophilic centers of the helix seems to determine the orientation of the helix at the lipid/water interface. The calculation of this parameter should be useful to discriminate between an amphipathic helix, parallel to the interface and a transmembrane helix orientated perpendicularly. The membrane-spanning helices are completely immersed in the phospholipid bilayer and their length corresponds to about the thickness of the hydrophobic core of the DPPC bilayer. The energy of interaction, expressed per phospholipid is significantly higher for the transmembrane compared to the amphipathic helices. For the membrane-spanning helices the mean energy of interaction is higher than the interaction energy between two phospholipids, while it is lower for most amphipathic helices. This might account for the stability of these protein-anchoring domains. This computer modeling approach should usefully complement the statistical analysis carried out on these helices, based on their hydrophobicity and hydrophobic moment. It represents a more refined analysis of the domains identified by the prediction techniques and stress the functional character of lipid-associating domains in membrane proteins as well as in soluble plasma lipoproteins.
Collapse
Affiliation(s)
- R Brasseur
- Laboratoire des Macromolecules aux Interfaces, Free University Brussels, Belgium
| | | | | | | |
Collapse
|
40
|
Brasseur R, Cornet B, Burny A, Vandenbranden M, Ruysschaert JM. Mode of insertion into a lipid membrane of the N-terminal HIV gp41 peptide segment. AIDS Res Hum Retroviruses 1988; 4:83-90. [PMID: 3259143 DOI: 10.1089/aid.1988.4.83] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The complete amino-acid sequence of the gp160 polyprotein of HIV (strain WMJ1) has been analyzed by the Eisenberg procedure. The region surrounding the cleavage site between the gp120 and the gp41 subunit contains a receptor-like region immediately followed by a transmembrane-like region containing approximately 13 residues. These two regions are separated by the cleavage site between gp120 and gp41. Since the same arrangement exists in some paramyxoviruses (unpublished observation) and since the effective cleavage between a receptor-like region and the transmembrane-like region is required in paramyxoviruses to generate fusogenic segment (located at the N-terminal sequence of the transmembrane-like region), we have focused our analysis on the conformational properties of the N-terminal peptide segment of HIV gp41. This peptide segment, which consists of a helical structure according to Garnier prediction, was oriented at the lipid-water interface using a theoretical analysis method that we recently developed. Analysis of the transmembrane peptide determined by Eisenberg method shows that the helical segment orients itself in the lipid monolayer obliquely with respect to the lipid-water interface. Since this rather unusual orientation for a membrane segment of a protein is also found in the fusogenic peptide of the Newcastle Disease Virus (Virus Genes, in press) and seems to possess membrane destabilizing properties, it is in agreement with previous reports suggesting a fusogenic role for the N-terminal part of gp41.
Collapse
Affiliation(s)
- R Brasseur
- Laboratory of Macromolecules at Interfaces, Brussels, Belgium
| | | | | | | | | |
Collapse
|
41
|
Gasset M, Killian JA, Tournois H, de Kruijff B. Influence of cholesterol on gramicidin-induced HII phase formation in phosphatidylcholine model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 939:79-88. [PMID: 2450586 DOI: 10.1016/0005-2736(88)90049-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influence of cholesterol incorporation on gramicidin-induced hexagonal HII phase formation in different phosphatidylcholine model systems was investigated by 31P- and 2H-NMR, small-angle X-ray diffraction and differential scanning calorimetry. In liquid-crystalline distearoylphosphatidylcholine systems cholesterol inhibits gramicidin-induced HII phase formation. In dioleoylphosphatidylcholine the opposite effect is observed. Cholesterol appears to preferentially interact with gramicidin under liquid-crystalline conditions in both systems. Two phenomena that had been reported for gramicidin-treated erythrocyte membranes and derived liposomes (Tournois, H., Leunissen-Bijvelt, J., Haest, C.W.M., De Gier, J. and De Kruijff, B. (1987) Biochemistry, 26, 6613-6621) could also be observed in more simple dioleoylphosphatidylcholine-gramicidin-cholesterol systems. These are (i) an increase in tube diameter in the gramicidin-induced HII phase with increasing temperature, which is ascribed to the presence of cholesterol in this phase, and (ii) the loss of the hexagonal HII phase related 31P-NMR line shape at lower temperatures despite the presence of this phase as demonstrated with X-ray diffraction. This latter phenomenon appears to be due to restrictions in the rate of lateral diffusion of the phospholipids around the HII tubes due to the presence of gramicidin.
Collapse
Affiliation(s)
- M Gasset
- Department of Biochemistry, University of Utrecht, The Netherlands
| | | | | | | |
Collapse
|
42
|
Batenburg AM, Brasseur R, Ruysschaert JM, van Scharrenburg GJ, Slotboom AJ, Demel RA, de Kruijff B. Characterization of the interfacial behavior and structure of the signal sequence of Escherichia coli outer membrane pore protein PhoE. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68909-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
43
|
Tournois H, Killian JA, Urry DW, Bokking OR, de Gier J, de Kruijff B. Solvent determined conformation of gramicidin affects the ability of the peptide to induce hexagonal HII phase formation in dioleoylphosphatidylcholine model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 905:222-6. [PMID: 2445381 DOI: 10.1016/0005-2736(87)90026-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is shown by 31P-NMR and small angle X-ray scattering that induction of an hexagonal HII phase in dioleoylphosphatidylcholine model membranes by external addition of gramicidin A' depends on the solvent which is used to solubilize the peptide. Addition of gramicidin from dimethylsulfoxide or trifluoroethanol solution leads to HII phase formation whereas addition of the peptide from ethanol does not. This solvent dependence is shown by circular dichroism to be correlated with the peptide conformation. The channel conformation appears to be responsible for HII phase formation by gramicidin.
Collapse
Affiliation(s)
- H Tournois
- Department of Biochemistry, University of Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|