1
|
Boateng ID. Polyprenols in Ginkgo biloba; a review of their chemistry (synthesis of polyprenols and their derivatives), extraction, purification, and bioactivities. Food Chem 2023; 418:136006. [PMID: 36996648 DOI: 10.1016/j.foodchem.2023.136006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
The Ginkgo biloba L. (GB) contains high bioactive compounds. To date, flavonoids and terpene trilactone have received the majority of attention in GB studies, and the GB has been utilized globally in functional food and pharmacological firms, with sales > $10 billion since 2017, while the other active components, for instance, polyprenols (a natural lipid) with various bioactivities have received less attention. Hence, this review focused on polyprenols' chemistry (synthesis of polyprenols and their derivatives) extraction, purification, and bioactivities from GB for the first time. The various extractions and purification methods (nano silica-based adsorbent, bulk ionic liquid membrane, etc.) were delved into, and their advantages and limitations were discussed. Besides, numerous bioactivities of the extracted Ginkgo biloba polyprenols (GBP) were reviewed. The review showed that GB contains some polyprenols in acetic esters' form. Prenylacetic esters are free of adverse effects. Besides, the polyprenols from GB have numerous bioactivities such as anti-bacterial, anti-cancer, anti-viral activity, etc. The application of GBPs in the food, cosmetics, and drugs industries such as micelles, liposomes, and nano-emulsions was delved into. Finally, the toxicity of polyprenol was reviewed, and it was concluded that GBP was not carcinogenic, teratogenic, or mutagenic, giving a theoretical justification for using GBP as a raw material for functional foods. This article will aid researchers to better understand the need to explore GBP usage.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, MO 65211, United States.
| |
Collapse
|
2
|
Zhang Q, Huang L, Zhang C, Xie P, Zhang Y, Ding S, Xu F. Synthesis and biological activity of polyprenols. Fitoterapia 2015; 106:184-93. [PMID: 26358482 DOI: 10.1016/j.fitote.2015.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/02/2015] [Accepted: 09/04/2015] [Indexed: 11/26/2022]
Abstract
The polyprenols and their derivatives are highlighted in this study. These lipid linear polymers of isoprenoid residues are widespread in nature from bacteria to human cells. This review primarily presents the synthesis and biological activities of polyprenyl derivatives. Attention is focused on the synthesis and biological activity of dolichols, polyprenyl ester derivatives and polyprenyl amines. Other polyprenyl derivatives, such as oxides of polyprenols, aromatic polyprenols, polyprenyl bromide and polyprenyl sulphates, are mentioned. It is noted that polyprenyl phosphates and polyprenyl-linked glycosylation have better antibacterial, gene therapy and immunomodulating performance, whereas polyprenyl amines have better for antibacterial and antithrombotic activity. Dolichols, polyprenyl acetic esters, polyprenyl phosphates and polyprenyl-linked glycosylation have pharmacological anti-tumour effects. Finally, the postulated prospect of polyprenols and their derivatives are discussed. Further in vivo studies on the above derivatives are needed. The compatibility of polyprenols and their derivatives with other drugs should be studied, and new preparations of polyprenyl derivatives, such as hydrogel glue and release-controlled drugs, are suggested for future research and development.
Collapse
Affiliation(s)
- Qiong Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China; Beijing Forestry University, Beijing 100083, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China.
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Yaolei Zhang
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Shasha Ding
- Institute of Chemical Industry of Forest Products, CAF, Nanjing, Jiangsu Province 210042, China; National Engineering Lab. for Biomass Chemical Utilization, Key and Open lab. of Forest Chemical Engineering, SFA, Nanjing, Jiangsu Province 210042, China; Key Lab. of Biomass Energy and Material, Nanjing, Jiangsu Province 210042, China
| | - Feng Xu
- Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Naumowicz M, Figaszewski ZA. Pore formation in lipid bilayer membranes made of phosphatidylcholine and cholesterol followed by means of constant current. Cell Biochem Biophys 2013; 66:109-19. [PMID: 23104105 PMCID: PMC3627032 DOI: 10.1007/s12013-012-9459-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This paper describes the application of chronopotentiometry to lipid bilayer research. The experiments were performed on bilayer lipid membranes composed of phosphatidylcholine and cholesterol and formed using the painting technique. Chronopotentiometric (U = f(t)) measurements were used to determine the membrane capacitance, resistance, and breakdown voltage as well as pore conductance and diameter.
Collapse
Affiliation(s)
- Monika Naumowicz
- Institute of Chemistry, University of Bialystok, Al. J. Pilsudskiego 11/4, 15-443, Bialystok, Poland.
| | | |
Collapse
|
4
|
Dielectric and Electrical Properties of Lipid Bilayers in Relation to their Structure. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0927-5193(03)80026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
5
|
Janas T, Krajiński H, Janas T. Electromigration of polyion homopolymers across biomembranes: a biophysical model. Biophys Chem 2000; 87:167-78. [PMID: 11099179 DOI: 10.1016/s0301-4622(00)00189-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The analysis of polyion transmembrane translocation was performed using membrane electrical equivalent circuit. The dependence of polyion flux across membranes on time, membrane electrical conductance, membrane electrical capacitance, degree of polymerization, water solution conductance and applied transmembrane potential is discussed. The changes in polyion flux were up to 88% after 1 ms. Both the increase of polyion chain length and the decrease of membrane conductance resulted in the diminution of this effect. Inversion of flux direction was observed as a result of external potential changes. Reversal curves, representing the values of considered parameters for zero-flux were also shown. The replacement of a polyanion by a polycation of the same chain length resulted in the same shape of the surface plot but with opposite orientation. The analysis describes the effect of transmembrane potential on the translocation rate of polyanionic polysialic acid and polynucleotides, and polycationic peptides across membranes.
Collapse
Affiliation(s)
- T Janas
- Department of Physics, Technical University, Zielona Góra, Poland
| | | | | |
Collapse
|
6
|
Janas T, Walińska K, Chojnacki T, Swiezewska E, Janas T. Modulation of properties of phospholipid membranes by the long-chain polyprenol (C(160)). Chem Phys Lipids 2000; 106:31-40. [PMID: 10878233 DOI: 10.1016/s0009-3084(00)00129-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The electrical measurements of phospholipid bilayers and the studies of phospholipid vesicles by using the transmission electron microscopy (TEM) showed that dotriacontaprenol (C(160)) isolated from leaves of Spermatophyta influences some properties of membranes. The current-voltage characteristics, the membrane conductance-temperature relationships, the membrane breakdown voltage and the membrane capacitance have been measured for different mixtures of C(160)/DOPC. The membrane conductance, the activation energy of ion migration across the membrane and the membrane thickness were determined. Dotriacontaprenol decreases the membrane breakdown voltage, the activation energy and the membrane capacitance, and increases the membrane conductance and the membrane hydrophobic thickness. The analysis of TEM micrographs shows several characteristic structures, which have been described. The results indicate that dotriacontaprenol increases the membrane elasticity and modulates the surface curvature of the membranes by the formation of fluid microdomains. We suggest that the long polyprenols facilitate the formation of transmembrane, ions-conductive pores.
Collapse
Affiliation(s)
- T Janas
- Department of Physics, Technical University, Podgórna 50, 65-246, Zielona Góra, Poland
| | | | | | | | | |
Collapse
|
7
|
Janas T, Walińska K. The effect of hexadecaprenyl diphosphate on phospholipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1464:273-83. [PMID: 10727614 DOI: 10.1016/s0005-2736(00)00154-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present study we investigated phospholipid bilayer membranes and phospholipid vesicles made from dioleoylphosphatidylcholine (DOPC) or its mixture with the phosphate ester derivative of long-chain polyprenol (hexadecaprenyl diphosphate, C(80)-PP) by electrophysiological and transmission electron microscopy (TEM) techniques. The membrane conductance-temperature relationships and the membrane breakdown voltage have been measured for different mixtures of C(80)-PP/DOPC. The current-voltage characteristics, the membrane conductance, the activation energy of ion migration across the membrane and the membrane breakdown voltage were determined. Hexadecaprenyl diphosphate decreases the membrane conductance, increases the activation energy and the membrane breakdown voltage for the various values of C(80)-PP/DOPC mole ratio. The analysis of TEM micrographs shows several characteristic structures, which have been described. The data indicate that hexadecaprenyl diphosphate modulates the surface curvature of the membranes by the formation of aggregates in liquid-crystalline phospholipid membranes. The properties of modified membranes can result from the presence of the negative charges in the hydrophilic part of C(80)-PP molecules and can be modulated by the concentration of this compound in membranes. We suggest that the dynamics and conformation of hexadecaprenyl diphosphate in membranes depend on the transmembrane electrical potential.
Collapse
Affiliation(s)
- T Janas
- Department of Biophysics, Pedagogical University, Monte Cassino 21 B, 65-561, Zielona Góra, Poland.
| | | |
Collapse
|
8
|
Sato M, Sato K, Nishikawa S, Hirata A, Kato J, Nakano A. The yeast RER2 gene, identified by endoplasmic reticulum protein localization mutations, encodes cis-prenyltransferase, a key enzyme in dolichol synthesis. Mol Cell Biol 1999; 19:471-83. [PMID: 9858571 PMCID: PMC83905 DOI: 10.1128/mcb.19.1.471] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/1998] [Accepted: 09/16/1998] [Indexed: 11/20/2022] Open
Abstract
As an approach to understand the molecular mechanisms of endoplasmic reticulum (ER) protein sorting, we have isolated yeast rer mutants that mislocalize a Sec12-Mfalpha1p fusion protein from the ER to later compartments of the secretory pathway (S. Nishikawa and A. Nakano, Proc. Natl. Acad. Sci. USA 90:8179-8183, 1993). The temperature-sensitive rer2 mutant mislocalizes different types of ER membrane proteins, suggesting that RER2 is involved in correct localization of ER proteins in general. The rer2 mutant shows several other characteristic phenotypes: slow growth, defects in N and O glycosylation, sensitivity to hygromycin B, and abnormal accumulation of membranes, including the ER and the Golgi membranes. RER2 and SRT1, a gene whose overexpression suppresses rer2, encode novel proteins similar to each other, and their double disruption is lethal. RER2 homologues are found not only in eukaryotes but also in many prokaryote species and thus constitute a large gene family which has been well conserved during evolution. Taking a hint from the phenotype of newly established mutants of the Rer2p homologue of Escherichia coli, we discovered that the rer2 mutant is deficient in the activity of cis-prenyltransferase, a key enzyme of dolichol synthesis. This and other lines of evidence let us conclude that members of the RER2 family of genes encode cis-prenyltransferase itself. The difference in phenotypes between the rer2 mutant and previously obtained glycosylation mutants suggests a novel, as-yet-unknown role of dolichol.
Collapse
Affiliation(s)
- M Sato
- Molecular Membrane Biology Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Abstract
The effect of undecaprenyl phosphate (C55-P) on dioleoylphosphatidylcholine (DOPC) bilayer lipid membranes has been studied. The current-voltage characteristics, steady-state diffusion potentials, membrane conductance-temperature relationships, membrane electric capacitance and membrane breakdown voltage have been measured for different mixtures of undecaprenyl phosphate and DOPC. The ratio of permeability coefficients for sodium and chloride ions, the activation energy for ion migration across the membrane and membrane thickness have been determined. The electrical measurements showed that undecaprenyl phosphate decreases membrane-normalized conductance, membrane ionic permeability, membrane hydrophobic thickness and membrane selectivity for chloride ions, and increases the activation energy for ion transport, membrane nonlinearity potential, membrane specific capacitance, membrane electromechanical stability and membrane selectivity for sodium ions. From the results, we suggest that the interaction of the gradient of electric transmembrane potential with the negative charge of the phosphate group of C55-P determines the dynamics, conformation and aggregation behaviour of undecaprenyl phosphate in phospholipid membranes. Some implications of these findings for a possible regulation of the C55-P-dependent expression of polysialic acid capsule in Escherichia coli K1 bacterial cells are indicated.
Collapse
Affiliation(s)
- T Janas
- Biophysics Laboratory, Higher College of Engineering, Zielona Góra, Poland
| | | |
Collapse
|
10
|
Nikolelis DP, Tzanelis MG, Krull UJ. Electrochemical transduction of the acetylcholine-acetylcholinesterase reaction by bilayer lipid membranes. Anal Chim Acta 1993. [DOI: 10.1016/0003-2670(93)85016-d] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
|
12
|
Control of ion transport across bilayer lipid membranes by adjustment of surface charge associated with phase domain structures. Anal Chim Acta 1992. [DOI: 10.1016/0003-2670(92)80149-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
|
14
|
Marino M, Girelli AM, Leoni S, Trentalance A. Variations of hepatic dolichols during rat development. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1047:192-4. [PMID: 2174268 DOI: 10.1016/0005-2760(90)90047-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The content and the percent distribution of dolichol and dolichyl phosphate homologues were measured by high-performance liquid chromatography in perinatal rat livers. Short dolichol chains and no dolichyl phosphate are detectable in the liver at foetal stages; dolichol content progressively increases during liver development. A good correlation is observable between the changes of the dolichol, dolichyl phosphate and the activity of dolichyl-phosphate phosphatase.
Collapse
Affiliation(s)
- M Marino
- Dipartimento di Biologia Cellulare e dello Sviluppo, Universita' La Sapienza, Roma, Italy
| | | | | | | |
Collapse
|
15
|
Janas T, Kuczera J, Chojnacki T. Voltage-dependent behaviour of dolichyl phosphate-phosphatidylcholine bilayer lipid membranes. Chem Phys Lipids 1990; 52:151-5. [PMID: 2311140 DOI: 10.1016/0009-3084(90)90158-n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The current-voltage steady-state characteristics, cyclic voltammograms and capacitance-voltage steady-state relationships of bilayer lipid membranes made from dioleoylphosphatidylcholine or its mixtures with dolichyl-12 phosphate have been studied. Sustained fluctuations of the capacitance of dolichyl phosphate modified bilayers under applied voltage were observed. The results suggest that the dynamics of dolichyl phosphate molecules in membranes can be regulated by transmembrane electrical potential.
Collapse
Affiliation(s)
- T Janas
- Department of Physics and Biophysics, Agricultural University, Wrocław, Poland
| | | | | |
Collapse
|
16
|
Van Dessel G, De Wolf M, Hilderson HJ, Lagrou A, Dierick W. Intracellular and extracellular flow of dolichol. Subcell Biochem 1990; 16:227-78. [PMID: 2238005 DOI: 10.1007/978-1-4899-1621-1_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- G Van Dessel
- UIA-Laboratory for Pathological Biochemistry, University of Antwerp, Belgium
| | | | | | | | | |
Collapse
|
17
|
Kalén A, Appelkvist EL, Dallner G. Age-related changes in the lipid compositions of rat and human tissues. Lipids 1989; 24:579-84. [PMID: 2779364 DOI: 10.1007/bf02535072] [Citation(s) in RCA: 285] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The levels of cholesterol, ubiquinone, dolichol, dolichyl-P, and total phospholipids in human lung, heart, spleen, liver, kidney, pancreas, and adrenal from individuals from one-day-old to 81 years of age were investigated and compared with the corresponding organs from 2 to 300 day-old rats. The amount of cholesterol in human tissues did not change significantly during aging, but the level of this lipid in the rat was moderately elevated in the organs of the oldest animals. In human pancreas and adrenal the ubiquinone content was highest at one year of age, whereas in other organs the corresponding peak value was at 20 years of age, and was followed by a continuous decrease upon further aging. A similar pattern was observed in the rats, with the highest concentration of ubiquinone being observed at 30 days of age. Dolichol levels in human tissues increase with aging, but they increase to very different extents. In the lungs this increase is seven-fold, and in the pancreas it is 150-fold. The elevation in the dolichol contents of rat tissues ranges from 20 to 30-fold in our material. In contrast, the levels of the phosphorylated derivative of dolichol increased to a more limited extent, i.e., 2 to 6-fold in human tissues and even less in the rat. These results demonstrate that the levels of a number of lipids in human and rat organs are modified in a characteristic manner during the life-span. This is in contrast to phospholipids, which constitute the bulk of the cellular lipid mass.
Collapse
Affiliation(s)
- A Kalén
- Department of Cellular and Neuropathology, Huddinge Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|